当前位置: 初中数学 /北师大版(2024) /七年级下册 /第四章 三角形 /5 利用三角形全等测距离
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2018-2019学年初中数学北师大版七年级下册4.5利用三...

更新时间:2019-03-12 浏览次数:389 类型:同步测试
一、单选题
  • 1. (2019八上·武威月考) 下列选项中,不是依据三角形全等知识解决问题的是(  )

    A . 利用尺规作图,作一个角等于已知角 B . 工人师傅用角尺平分任意角 C . 利用卡钳测量内槽的宽 D . 用放大镜观察蚂蚁的触角
  • 2. (2020七下·张掖月考) 如图,为测量B点到河对面的目标A之间的距离,他们在B点同侧选择了一点C,测得∠ABC=70°,∠ACB=40°,然后在M处立了标杆,使∠CBM=70°,∠BCM=40°,那么需要测量________才能测得A,B之间的距离( )

    A . AB B . AC C . BM D . CM
  • 3. (2023七下·薛城月考) 某大学计划为新生配备如图①所示的折叠凳.图②是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30 cm,则由以上信息可推得CB的长度也为30 cm,依据是( )

    A . SAS B . ASA C . SSS D . AAS
  • 4. 如图,两棵大树间相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED.已知大树AB的高为5m,小华行走的速度为lm/s,小华走的时间是(   )

    A . 13 B . 8 C . 6 D . 5
  • 5. 山西中学阶段考试要求提出继续加大考查“活动建议”力度,目的是考查学生运用所学知识解决问题的能力,体现实践创新.某实践活动小组成员要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是(   )

    A . SAS B . ASA C . SSS D . AAS
  • 6. 小明沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙0点,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息如下:如图,AB∥OE,OE∥CD,AC与BD相交于点O,OD⊥CD,垂足为点D,下列结论中不正确的是(   )

    A . ∠BOA=∠DOC B . AB∥CD C . ∠ABD=90° D . 与∠AOE相等的角共有2个
  • 7. 如图,把两根钢条AB,CD的中点O连在一起,可以做成一个测量工件内槽宽的工具(卡钳).只要量得AC之间的距离,就可知工件的内径BD.其数学原理是利用△AOC≌△BOD,判断△AOC≌△BOD的依据是(   )

    A . SAS B . SSS C . ASA D . AAS
  • 8.

    如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是(  )

    A . SSS B . ASA  C . AAS D . SAS
  • 9.

    如图,A在O的正北方向,B在O的正东方向,且A、B到点O的距离相等.甲从A出发,以每小时60千米的速度朝正东方向行驶,乙从B出发,以每小时40千米的速度朝正北方向行驶,1小时后,位于点O处的观察员发现甲、乙两人之间的夹角为45°,即∠COD=45°,此时甲、乙两人相距(  )

    A . 80千米 B . 50千米 C . 100千米 D . 100千米
  • 10.

    要测量圆形工件的外径,工人师傅设计了如图所示的卡钳,点O为卡钳两柄交点,且有OA=OB=OC=OD,如果圆形工件恰好通过卡钳AB,则此工件的外径必是CD之长了,其中的依据是全等三角形的判定条件(  )

    A . SSS B . SAS C . ASA D . AAS
二、填空题
  • 11. 初一(1)班的篮球拉拉队,为了在明天的比赛中给同学加油助威,每个人都提前制作了一面同一规格的三角形彩旗.小明放学回家后,发现自己的彩旗破损了一角,他想用彩纸重新制作一面彩旗(如图所示).于是小明挑选了其中的一块,准备用直尺与圆规在彩纸上作出一个与破损前完全一样的三角形,你认为他作图的根据是.(只要填写两个三角形全等的一个条件)

  • 12. (2020八上·惠城期末)

    如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE= 度.

  • 13.

    如图,某人将一块正五边形玻璃打碎成四块,现要到玻璃店配一块完全一样的玻璃,那么最省事的方法是带   块.

  • 14.

    在数学综合实践活动课上,张老师给了各活动小组大直角三角板一个、皮尺一条,测量如图所示小河的宽度(A为河岸边一棵柳树).小颖是这样做的:

    ①在A点的对岸作直线MN;

    ②用三角板作AB⊥MN垂足为B;

    ③在直线MN取两点C、D,使 BC=CD;

    ④过D作DE⊥MN交AC的延长线于E,由三角形全等可知DE的长度等于河宽AB.

    在以上的做法中,△ABC≌△DEC的根据是 

  • 15. (2021七上·济宁期末)

    小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第 块.

三、解答题
  • 16. 如图,工人师傅要检查人字梁的∠B和∠C是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA和CA上取BE=CG;②在BC上取BD=CF;③量出DE的长为a m,FG的长为b m.如果a=b,则说明∠B和∠C是相等的,他的这种做法合理吗?为什么?

  • 17. 如图:A、B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,但绳子不够长.他叔叔帮他出了一个这样的主意:先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到E,使CD=AC;连接BC并延长到E,使CE=CB;连接DE并测量出DE=8m;

    问题:DE=AB吗?AB的长度是多少?请说明理由.

  • 18. (2017九上·宜昌期中) 杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:

    如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD,垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.

  • 19. (2020八上·万山期中)

    你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA′、BB′有何数量关系,为什么?

  • 20. 如图,两根旗杆相距12m,某人从B点沿BA走向A点,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM,已知旗杆AC的高为3m,该人的运动速度为1m/s,求:这个人从B点到M点运动了多长时间?

  • 21. (2020八上·椒江期中) 如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=3m.小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A′处时,有A'B⊥AB.

    1. (1) 求A′到BD的距离;
    2. (2) 求A′到地面的距离.

微信扫码预览、分享更方便

试卷信息