当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年山东省日照市经济开发区中考数学一模试卷

更新时间:2024-07-12 浏览次数:881 类型:中考模拟
一、选择题
二、填空题
三、解答题
  • 17. (2017·日照模拟) 先化简,再求值:(a+ )÷(a﹣2+ ),其中a满足a2﹣a﹣2=0.
  • 18. (2017·日照模拟) 在2015年的政府工作报告中提出了九大热词,某数学兴趣小组就A互联网+、B民生底线、C中国制造2.0、D能耗强度等四个热词进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图.

    请你根据统计图提供的信息,解答下列问题:

    1. (1) 本次调查中,一共调查了名同学;
    2. (2) 条形统计图中,m=,n=
    3. (3) 扇形统计图中,热词B所在扇形的圆心角的度数是
    4. (4) 从该校学生中随机抽取一个最关注热词D的学生的概率是多少?
  • 19. (2017·日照模拟) 如图,AB为⊙O的直径,点C为AB延长线上一点,动点P从点A出发沿AC方向以lcm/s的速度运动,同时动点Q从点C出发以相同的速度沿CA方向运动,当两点相遇时停止运动,过点P作AB的垂线,分别交⊙O于点M和点N,已知⊙O的半径为l,设运动时间为t秒.

    1. (1) 若AC=5,则当t=时,四边形AMQN为菱形;当t=时,NQ与⊙O相切;
    2. (2) 当AC的长为多少时,存在t的值,使四边形AMQN为正方形?请说明理由,并求出此时t的值.
  • 20. (2021九上·新泰月考)

    在某飞机场东西方向的地面l上有一长为1km的飞机跑道MN(如图),在跑道MN的正西端14.5千米处有一观察站A.某时刻测得一架匀速直线降落的飞机位于点A的北偏西30°,且与点A相距15千米的B处;经过1分钟,又测得该飞机位于点A的北偏东60°,且与点A相距5 千米的C处.

    1. (1) 该飞机航行的速度是多少千米/小时?(结果保留根号)

    2. (2) 如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN之间?请说明理由.

  • 21. (2017·日照模拟)

    问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.

    1. (1) 【发现证明】


      小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.

    2. (2) 【类比引申】


      如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.

    3. (3) 【探究应用】


      如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40( ﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据: =1.41, =1.73)

  • 22. (2019九上·东台期中)

    如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.

    1. (1) 求抛物线的解析式和对称轴;

    2. (2) 在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;

    3. (3) 连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息