当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2012年四川省成都市中考数学试卷

更新时间:2017-05-27 浏览次数:552 类型:中考真卷
一、选择题
二、A卷填空题
三、解答题
    1. (1) 计算:
    2. (2) 解不等式组:
  • 17. (2021·渠县模拟)

    如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5米.试帮助小华求出旗杆AB的高度.(结果精确到0.1米,

  • 18. (2012·成都) 如图,一次函数y=﹣2x+b(b为常数)的图象与反比例函数 (k为常数,且k≠0)的图象交于A,B两点,且点A的坐标为(﹣1,4).

    1. (1) 分别求出反比例函数及一次函数的表达式;
    2. (2) 求点B的坐标.
  • 19. (2012·成都) 某校将举办“心怀感恩•孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.

    1. (1) 本次调查抽取的人数为,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为
    2. (2) 校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.
  • 20. (2021九上·成都期中) 如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.

    1. (1) 如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;
    2. (2) 如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ= 时,P、Q两点间的距离 (用含a的代数式表示).
四、填空题
  • 21. (2020七上·仙居期中) 已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为
  • 22. (2012·成都) 一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为 (结果保留π)

  • 23. (2012·成都) 有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,O)的概率是
  • 24. (2012·成都)

    如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数 (k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若 (m为大于l的常数).记△CEF的面积为S1 , △OEF的面积为S2 , 则 =. (用含m的代数式表示)

  • 25. (2012·成都) 如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:

    第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);

    第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;

    第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.

    (注:裁剪和拼图过程均无缝且不重叠)

    则拼成的这个四边形纸片的周长的最小值为cm,最大值为cm.

五、解答题
  • 26. (2012·成都) “城市发展 交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数.函数关系如图所示.

    1. (1) 求当28<x≤188时,V关于x的函数表达式;
    2. (2) 若车流速度V不低于50千米/时,求当车流密度x为多少时,车流量P(单位:辆/时)达到最大,并求出这一最大值.

      (注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)

  • 27. (2012·成都) 如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.

    1. (1) 求证:KE=GE;
    2. (2) 若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;
    3. (3) 在(2)的条件下,若sinE= ,AK=2 ,求FG的长.
  • 28. (2012·成都)

    如图,在平面直角坐标系xOy中,一次函数 (m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C两点,并与x轴的正半轴交于点B.

    1. (1) 求m的值及抛物线的函数表达式;

    2. (2) 设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;

    3. (3) 若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1 , y1),M2(x2 , y2)两点,试探究 是否为定值,并写出探究过程.

微信扫码预览、分享更方便

试卷信息