当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省杭州市临安区2018-2019学年九年级下学期数学期中...

更新时间:2024-07-13 浏览次数:480 类型:期中考试
一、选择题:本大题有10个小题,每小题3分,共30分。在每小题给出的四个选项中,只有一项最符合题目要求.
二、填空题:本题有6个小题,每小题4分,共24分。
三、解答题:本题有7小题,共66分。
  • 17. (2019九下·杭州期中) 先化简,再求值:

    ,其中a=1+ ,b=-1+

  • 18. (2019九下·杭州期中) 某中学需在短跑、跳远、乒乓球、跳高四类体育项目中各选一名同学参加中学生运动会,根据平时成绩,把各项目进入复选的人员情况绘制成不完整的统计图、表如下:

    复选人员统计表:

    项目/人数/性别

    短跑

    1

    2

    跳远

    a

    6

    乒乓球

    2

    1

    跳高

    3

    b

    1. (1) a= ,b=
    2. (2) 求扇形统计图中跳远项目对应圆心角的度数;
    3. (3) 用列表法或画树状图法,在短跑和乒乓球项目中选出的两位同学都为男生的概率。
  • 19. (2019九下·杭州期中) 如图,△ABC、△DCE、△FEG是三个全等的等腰三角形,底边BC、CE、EG在同一直线上,且AB= ,BC=1,连结BF,分别交AC、DC、DE于点P、Q、R.

    1. (1) 求证:△BFG∽△FEG
    2. (2) 求sin∠FBG的值.
  • 20. (2019九下·杭州期中) 2019年3月5日,为了弘扬“雷锋精神”,某中学组织了甲、乙两个学雷锋小组,甲组x人,乙组y人,到延安路和建国路打扫卫生,根据打扫卫生的进度,学校随时调整两组人数,如果从甲组调50人去乙组,则乙组人数为甲组人数的2倍;如果从乙组调m(m>0)人去甲组,则甲组人数为乙组人数的3倍。
    1. (1) 求出x与m之间的函数表达式。
    2. (2) 当m为何值时,甲组人数最少?最少是多少人?
  • 21. (2019九下·杭州期中) 如图,已知AB是⊙O的直径,BC与⊙O相切于点B,CD与⊙O相切于点D,连结AD.

    1. (1) 求证:AD∥OC.
    2. (2) 小聪与小明在做这个题目的时候,对∠CDA与∠AOC之间的关系进行了探究:

      小聪说,∠CDA+∠AOC的值是一个固定的值;

      小明说,∠CDA+∠AOC的值随∠A度数的变化而变化。

      若∠CDA+∠AOC的值为y,∠A度数为x.你认为他们之中谁说的是正确的?若你认为小聪说的正确,请你求出这个固定值:若你认为小明说的正确,请你求出y与x之间的关系.

  • 22. (2019九下·杭州期中) 如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.

    1. (1) 求抛物线的函数表达式.
    2. (2) 当t为何值时,矩形ABCD的周长有最大值?最大值是多少?
    3. (3) 保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H.当直线GH平分矩形的面积时,求抛物线平移的距离。
  • 23. (2019九下·杭州期中) 如图(1),四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.

    1. (1) 试判断BE与FH的数量关系,并说明理由;
    2. (2) 求证:∠ACF=90°;
    3. (3) 连接AF,过A,E,F三点作圆,如图(2).若EC=4,∠CEF=15°,求 的长.

微信扫码预览、分享更方便

试卷信息