如图,已知a∥b,∠1=68°,则∠2=( )
如图物体的主视图是( )
如图,在△ABC中,点D,E分别在AB,AC上,且 ,则 : ( )
如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC=.
如图,正方形ABCD的边长为13,以CD为斜边向外作Rt△CDE,若点A到CE的距离为17,则CE=.
一张宽为6cm的平行四边形纸带ABCD如图1所示,AB=10cm,小
明用这张纸带将底面周长为10cm直三棱柱纸盒的侧面进行包贴(要求包
贴时没有重叠部分). 小明通过操作后发现此类包贴问题可将直三棱柱的
侧面展开进行分析.
,其中x=2.
如图所示,在▱ABCD中,对角线AC与BD相交于点O,过点O作一条直线分别交AB,CD于点E,F.
小张在甲楼A处向外看,由于受到前面乙楼的遮挡,最近只能看到地面D处,俯角为α.小颖在甲楼B处(B在A的正下方)向外看,最近能看到地面E处,俯角为β,地面上G,F,D,E在同一直线上,已知乙楼高CF为10m,甲乙两楼相距FG为15m,俯角α=45°,β=35°.
学校计划在七年级学生中开设4个信息技术应用兴趣班,分别为“无人机”班,“3D打印”班,“网页设计”班,“电脑绘画”班,规定每人最多参加一个班,自愿报名.根据报名情况绘制了下面统计图表,请回答下列问题:
七年级兴趣班报名情况统计表
如图,OA,OB是⊙O的两条半径,OA⊥OB,C是半径OB上一动点,连结AC并延长交⊙O于D,过点D作圆的切线交OB的延长线于E,已知OA=8.
探究:如图1 ,直线l与坐标轴的正半轴分别交于A,B两点,与反比例函数 的图象交于C,D两点(点C在点D的左边),过点C作CE⊥y轴于点E,过点D作DF⊥x轴于点F,CE与DF交于点G(a , b).
①若 ,请用含n的代数式表示 ;
②求证: ;
应用:如图2,直线l与坐标轴的正半轴分别交于点A,B两点,与反比例函数 的图象交于点C,D两点(点C在点D的左边),已知 ,△OBD的面积为1,试用含m的代数式表示k.
已知,抛物线y=ax²+bx+4与x轴交于点A(-3,0)和B(2,0),与y轴交于点C.
对称轴上是否存在点F,使以B,D,F,E为顶点的四边形为菱形?若存在,请求出点F的坐标;若不存在,请说明理由.