当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年高考数学真题试卷(江苏卷)

更新时间:2017-06-09 浏览次数:1041 类型:高考真卷
一、填空题
二、解答题
  • 15. (2017·江苏) 如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.

    求证:(Ⅰ)EF∥平面ABC;

    (Ⅱ)AD⊥AC.

  • 16. (2017·江苏) 已知向量 =(cosx,sinx), =(3,﹣ ),x∈[0,π].

    1. (1) 若 ,求x的值;
    2. (2) 记f(x)= ,求f(x)的最大值和最小值以及对应的x的值.
  • 17. (2017·江苏)

    如图,在平面直角坐标系xOy中,椭圆E: =1(a>b>0)的左、右焦点分别为F1 , F2 , 离心率为 ,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1 , 过点F2作直线PF2的垂线l2

    (Ⅰ)求椭圆E的标准方程;

    (Ⅱ)若直线l1 , l2的交点Q在椭圆E上,求点P的坐标.

  • 18. (2017·江苏)

    如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10 cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)

    (Ⅰ)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;

    (Ⅱ)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.

  • 19. (2017·江苏) 对于给定的正整数k,若数列{an}满足:an﹣k+an﹣k+1+…+an﹣1+an+1+…an+k﹣1+an+k=2kan对任意正整数n(n>k)总成立,则称数列{an}是“P(k)数列”.

    (Ⅰ)证明:等差数列{an}是“P(3)数列”;

    (Ⅱ)若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.

  • 20. (2017·江苏) 已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)

    (Ⅰ)求b关于a的函数关系式,并写出定义域;

    (Ⅱ)证明:b2>3a;

    (Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于﹣ ,求a的取值范围.

  • 21. (2017·江苏)

    如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.

    求证:(Ⅰ)∠PAC=∠CAB;

    (Ⅱ)AC2 =AP•AB.


  • 22. (2017·江苏) 已知矩阵A= ,B=

    (Ⅰ)求AB;

    (Ⅱ)若曲线C1 =1在矩阵AB对应的变换作用下得到另一曲线C2 , 求C2的方程.

  • 23. (2017·江苏) 在平面直角坐标系xOy中,已知直线l的参数方程为 (t为参数),曲线C的参数方程为 (s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.

  • 24. (2017·江苏) 已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.

  • 25. (2017·江苏)

    如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1= ,∠BAD=120°.

    (Ⅰ)求异面直线A1B与AC1所成角的余弦值;

    (Ⅱ)求二面角B﹣A1D﹣A的正弦值.

  • 26. (2017·江苏) 已知一个口袋有m个白球,n个黑球(m,n∈N* , n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).

    1

    2

    3

    m+n

    (Ⅰ)试求编号为2的抽屉内放的是黑球的概率p;

    (Ⅱ)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<

微信扫码预览、分享更方便

试卷信息