当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省宁波市2019届数学中考一模试卷(二)

更新时间:2024-11-06 浏览次数:633 类型:中考模拟
一、单选题
二、填空题
三、解答题
    1. (1) 计算:6sin60°+(π﹣ )0  ﹣|﹣2|;
    2. (2) 化简:(2x﹣3y)2﹣(2x+y)(2x﹣y).
  • 20. (2019·宁波模拟) 如图,在平行四边形ABCD中,点E,F分别是BC,AD的中点.

    1. (1) 求证:△ABE≌△CDF;
    2. (2) 若AE=CE,BC=2AB,BC=6,求四边形AECF的面积.
  • 21. (2019·宁波模拟) 宁波某中学有2500名学生,为了解全校每名学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到扇形统计图如图:

    1. (1) 本次调查的个体是,样本容量是
    2. (2) 扇形统计图中,乘私家车部分对应的圆心角是度;
    3. (3) 请估计该校2500名学生中,选择骑车和步行上学的一共有多少人?
  • 22. (2022·鄞州模拟) 图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.

    1. (1) 在图①、图②中,以格点为顶点,线段AB为一边,分别画一个平行四边形和菱形,并直接写出它们的面积.(要求两个四边形不全等)
    2. (2) 在图③中,以点A为顶点,另外三个顶点也在格点上,画一个面积最大的正方形,并直接写出它的面积.
  • 23. (2019·宁波模拟) 如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,G是弧AC上的任意一点,AG,DC的延长线相交于点F.

    1. (1) 若CD=8,BE=2,求⊙O的半径;
    2. (2) 求证:∠FGC=∠AGD;
    3. (3) 若直径AB=10,tan∠BAC= ,弧AG=弧BG,求DG的长.
  • 24. (2019·宁波模拟) 城隍庙是宁波市的老牌商业中心,城隍庙商业步行街某商场购进一批品牌女装,购进时的单价是600元,根据市场调查,在一段时间内,销售单价是800元时,销售量是200件,销售单价每降低10元,就可多售出20件.
    1. (1) 求出销售量y(件)与销售单价x(元)之间的函数关系式;
    2. (2) 求出销售该品牌女装获得的利润W(元)与销售单价x(元)之间的函数关系式;
    3. (3) 若服装厂规定该品牌女装的销售单价不低于760元且不高于800元,则商场销售该品牌女装获得的最大利润是多少?
  • 25. (2019·莲湖模拟) 在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点A,B,C,已知A(﹣1,0),B(5,0),C(0,5)

    1. (1) 求抛物线与直线BC的表达式;
    2. (2) 如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;
    3. (3) 如图2,抛物线顶点为E,EF⊥x轴于点F,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.
  • 26. (2019·宁波模拟) 如图,矩形ABCD中,AD=10,CD=15,E是边CD上一点,且DE=5,P是射线AD上一动点,过A,P,E三点的⊙O交直线AB于点F,连结PE,EF,PF,设AP=x.

    1. (1) 当x=5时,求AF的长.
    2. (2) 在点P的整个运动过程中.

      ①tan∠PFE的值是否改变?若不变,求出它的值;若改变,求出它的变化范围;

      ②当矩形ABCD恰好有2个顶点落在⊙O上时,求x的值.

    3. (3) 若点A,H关于点O成中心对称,连结EH,CH.当△CEH是等腰三角形时,求出所有符合条件的x的值.(直接写出答案即可)

微信扫码预览、分享更方便

试卷信息