当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省宁波市南三片2019届数学中考一模试卷

更新时间:2024-07-13 浏览次数:495 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 20. (2019·宁波模拟) 某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成不完整的条形统计图和扇形统计图.

    结合以上信息解答下列问题:

    1. (1) m=.
    2. (2) 请补全上面的条形统计图;
    3. (3) 在图2中,乒乓球所对应扇形的圆心角=
    4. (4) 已知该校共有2100名学生,请你估计该校约有多少名学生最喜爱足球活动.
  • 21. (2019·宁波模拟) 如图1是某商场从一楼到二楼的自动扶梯,图2是侧面示意图,MN是二楼楼顶,MN∥PQ,点C在MN上,且位于自动扶梯顶端B点的正上方,BC⊥MN.测得AB=10米,在自动扶梯底端A处测得点C的仰角为50°,点B的仰角为30°,求二楼的层高BC(结果保留根号)

    (参考数据:sin50°=0.77,cos50°=0.64,tan50°=1.20)

  • 22. (2024·犍为模拟) 如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.

    1. (1) 求证:△ACD≌△AED;
    2. (2) 若∠B=30°,CD=1,求BD的长.
  • 23. (2019·宁波模拟) 如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.

    1. (1) 求抛物线y=﹣x2+ax+b的解析式;
    2. (2) 当点P是线段BC的中点时,求点P的坐标;
    3. (3) 在(2)的条件下,求sin∠OCB的值.
  • 24. (2019·宁波模拟) 从宁海县到某市,可乘坐普通列车或高铁,已知高铁的行驶路程与普通列车的行驶路程之和是920千米,而普通列车的行驶路程是高铁的行驶路程的1.3倍.
    1. (1) 求普通列车的行驶路程;
    2. (2) 若高铁的平均速度(千米/时)是普通列车的平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.
  • 25. (2019·宁波模拟) 定义:如图(1),E,F,G,H四点分别在四边形ABCD的四条边上,若四边形EFGH为菱形,我们称菱形EFGH为四边形ABCD的内接菱形.

    1. (1) 【动手操作】

      如图(2),网格中的每个小四边形都为正方形,每个小四边形的顶点叫做格点,由36个小正方形组成一个大正方形ABCD,点E、F在格点上,请在图(2)中画出四边形ABCD的内接菱形EFGH;

    2. (2) 【特例探索】

      如图(3),矩形ABCD,AB=5,点E在线段AB上且EB=2,四边形EFGH是矩形ABCD的内接菱形,求GC的长度;

    3. (3) 【拓展应用】

      如图(4),平行四边形ABCD,AB=5,∠B=60°,点E在线段AB上且EB=2,

      ①请你在图(4)中画出平行四边形ABCD的内接菱形EFGH,点F在边BC上;

      ②在①的条件下,当BF的长最短时,BC的长为.

      (请同学们注意:以上作图题用直尺和圆规作图,不写作法,保留作图痕迹)

  • 26. (2020·广州模拟) 如图1,在平面直角坐标系xOy中,半径为1的⊙O与x轴正半轴和y轴正半轴分别交于A,B两点,直线l:y=kx+2(k<0)与x轴和y轴分别交于P,M两点.

    1. (1) 当直线与⊙O相切时,求出点M的坐标和点P的坐标;
    2. (2) 如图2,当点P在线段OA上时,直线1与⊙O交于E,F两点(点E在点F的上方)过点F作FC∥x轴,与⊙O交于另一点C,连结EC交y轴于点D.

      ①如图3,若点P与点A重合时,求OD的长并写出解答过程;

      ②如图2,若点P与点A不重合时,OD的长是否发生变化,若不发生变化,请求出OD的长并写出解答过程;若发生变化,请说明理由.

    3. (3) 如图4,在(2)的基础上,连结BF,将线段BF绕点B逆时针旋转90°到BQ,若点Q在CE的延长线时,请用等式直接表示线段FC,FQ之间的数量关系.

微信扫码预览、分享更方便

试卷信息