无
*注意事项:
= ﹣ ;
…
请利用你所得结论,化简代数式: + + +…+ (n≥3且n为整数),其结果为.
(Ⅱ)利用所学知识以及(Ⅰ)所得等式,化简代数式 ÷ .
①方程x2﹣2x+1=0的解为;
②方程x2﹣3x+2=0的解为;
③方程x2﹣4x+3=0的解为;
①方程x2﹣9x+8=0的解为;
②关于x的方程的解为x1=1,x2=n.
甲
63
66
61
64
乙
65
60
(Ⅰ)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?
(Ⅱ)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对情况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.
(Ⅰ)根据以上尺规作图的过程,求证:四边形ABEF是菱形;
(Ⅱ)若菱形ABEF的周长为16,AE=4 ,求∠C的大小.
(Ⅰ)求证:直线DM是⊙O的切线;
(Ⅱ)求证:DE2=DF•DA.
如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.
(Ⅰ)求直线y=kx+b的函数解析式;
(Ⅱ)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;
(Ⅲ)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.
微信扫码预览、分享更方便
详情