当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省温州市鹿城区2019届数学中考模拟试卷(3月)

更新时间:2024-07-13 浏览次数:386 类型:中考模拟
一、单选题
二、填空题
三、解答题
    1. (1) 计算: +( 1﹣|﹣3|
    2. (2) 先化简,再求值:(a﹣2)(a+2)﹣a(a﹣1),其中a=﹣1
  • 18. (2020八下·兴宾期中) 如图,在Rt△ABC中,∠BAC=90°,AD平分∠BAC,过AC的中点E作FG∥AD,交BA的延长线于点F,交BC于点G,

    1. (1) 求证:AE=AF;
    2. (2) 若BC= AB,AF=3,求BC的长.
  • 19. (2019·秦安模拟) 学了统计知识后,小红就本班同学上学“喜欢的出行方式”进行了一次调查,图(1)和图(2)是她根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:

    1. (1) 补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数.
    2. (2) 若由3名“喜欢乘车”的学生,1名“喜欢骑车”的学生组队参加一项活动,现欲从中选出2人担任组长(不分正副),求出2人都是“喜欢乘车”的学生的概率,(要求列表或画树状图)
  • 20. (2019·鹿城模拟) 在直角坐标系中,我们把横,纵坐标都是整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,4),B(1,1),请在所给网格区域(含边界)上按要求画整点三角形.

    ①在图1中画一个Rt△PAB,使点P落在坐标轴上;

    ②在图2中画一个等腰△PAB,使得△PAB的面积为4.

  • 21. (2024八下·丰城月考) 如图,▱ABCD与抛物线y=﹣x2+bx+c相交于点A,B,D,点C在抛物线的对称轴上,已知点B(﹣1,0),BC=4.

    1. (1) 求抛物线的解析式;
    2. (2) 求BD的函数表达式.
  • 22. (2019·鹿城模拟) 如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF.

    1. (1) 求证:∠ACD=∠F;
    2. (2) 若tan∠F=

      ①求证:四边形ABCD是平行四边形;

      ②连接DE,当⊙O的半径为3时,求DE的长.

  • 23. (2019·鹿城模拟) 小王准备给家中长为3米的正方形ABCD电视墙铺设大理石,按图中所示的方案分成9块区域分别铺设甲,乙,丙三种大理石(正方形EFGH是由四块全等的直角三角形围成),

    1. (1) 已知甲大理石的单价为150元/m2 , 乙大理石的单价为200元/m2 , 丙大理石的单价为300元/m2 , 整个电视墙大理石总价为1700元.

      ①当铺设甲,乙大理石区域面积相等时,求铺设丙大理石区域的面积.

      ②设铺设甲,乙大理石区域面积分别为xm2 , ym2 , 当丙的面积不低于1m2时,求出y关于x的函数关系式,并写出y的最大值.

    2. (2) 若要求AE:AF=1:2,EQ:FQ=1:3,甲,乙大理石单价之和为300元/m2 , 丙大理石的单价不低于300元/m2 , 铺设三种大理石总价为1620元,求甲的单价取值范围.
  • 24. (2019·鹿城模拟) 如图在矩形ABCD中,AB=8,过对角线AC的中点O作直线PE,交AB于点P,交CD于点Q,交射线AD于点E,连接CE,作点Q关于CE对称的对称点Q′,以Q′为圆心,为CQ′半径作⊙Q′,交CE于点M,设BC=x.

    1. (1) 请说明△AOP≌△COQ的理由.
    2. (2) 若AP=5,

      ①请用x的代数式表示DE的长.

      ②当△DQM为直角三角形时,请求出所有满足条件的BC的值.

    3. (3) 若存在⊙Q′同时与直线AC和直线AD相切,请直接写出⊙Q′的半径.

微信扫码预览、分享更方便

试卷信息