当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年浙江省台州市临海市第三教研区中考数学模拟试卷

更新时间:2024-07-12 浏览次数:883 类型:中考模拟
一、选择题
二、填空题
三、解答题
  • 17. (2017·临海模拟) 综合题。
    1. (1) 计算:(π﹣3.14)0+( 1+|﹣2 |﹣
    2. (2) 先化简,再求值: ÷( ﹣x+1),并从﹣tan60°≤x≤2cos30°取出一个合适的整数,求出式子的值.
  • 18. (2017·临海模拟) 已知直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C、D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.
    1. (1) 若⊙O的半径为8,求CD的长;
    2. (2) 证明:PE=PF;
    3. (3) 若PF=13,sinA= ,求EF的长.

  • 19. (2017·临海模拟)

    如图是由边长为1的小正三角形组成的网格图,点O和△ABC的顶点都在正三角形的格点上,将△ABC绕点O逆时针旋转120°得到△A′B′C′.

    1. (1) 在网格中画出旋转后的△A′B′C′;

    2. (2) 求AB边旋转时扫过的面积.

  • 20. (2017·临海模拟)

    如图,AB、CD是两个过江电缆的铁塔,塔AB高40米,AB的中点为P,塔底B距江面的垂直高度为6米.跨江电缆因重力自然下垂近似成抛物线形,为了保证过往船只的安全,电缆下垂的最低点距江面的高度不得少于30米.已知:人在距塔底B点西50米的地面E点恰好看到点E、P、C在一直线上;再向西前进150米后从地面F点恰好看到点F、A、C在一直线上.

    1. (1) 求两铁塔轴线间的距离(即直线AB、CD间的距离);

    2. (2) 若以点A为坐标原点,向东的水平方向为x轴,取单位长度为1米,BA的延长方向为y轴建立坐标系.求刚好满足最低高度要求的这个抛物线的解析式.

  • 21. (2017·临海模拟) 临海市初中第三教研区为了丰富学生课余活动,组织同学开展每周一次的社团活动,活动内容有足球、跳绳、跳舞、篮球、象棋共5项,为方便组织,规定每位同学只能报一项活动,根据报名绘制了如下两幅尚不完整的统计图,解答下列问题:

    1. (1) 将条形统计图补充完整;
    2. (2) 写出扇形统计图中的m和n的值;
    3. (3) 瑶瑶和欣欣两名同学对足球、篮球、象棋三项活动都很感兴趣,决定从三项活动中随机抽取一项参加,利用树状图或列表表示所有可能结果,并求出两人参加同一项目的概率;
    4. (4) 由于场地限制,参加足球活动的学生人数不能超过参加其余活动学生人数的 ,那么至少几位同学需要从参加足球活动调整到参加其余活动?
  • 22. (2017·临海模拟) 某花木公司在20天内销售一批马蹄莲.其中,该公司的鲜花批发部日销售量y1(万朵)与时间x(x为整数,单位:天)部分对应值如下表所示.

    时间x(天)

    0

    4

    8

    12

    16

    20

    销量y1(万朵)

    0

    16

    24

    24

    16

    0

    另一部分鲜花在淘宝网销售,网上销售日销售量y2(万朵)与时间x(x为整数,单位:天) 关系如图所示.

    1. (1) 请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与x的变化规律,写出y1与x的函数关系式及自变量x的取值范围;
    2. (2) 观察马蹄莲网上销售量y2与时间x的变化规律,请你设想商家采用了何种销售策略使得销售量发生了变化,并写出销售量y2与x的函数关系式及自变量x的取值范围;
    3. (3) 设该花木公司日销售总量为y万朵,写出y与时间x的函数关系式,并判断第几天日销售总量y最大,并求出此时最大值.
  • 23. (2017·临海模拟)

    如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y= x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y= x2+bx+c交于第四象限的F点.


    1. (1) 求该抛物线解析式与F点坐标;

    2. (2)

      如图(2),动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE以每秒 个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒


      ①问EP+PH+HF是否有最小值?如果有,求出t的值;如果没有,请说明理由.

      ②若△PMH是等腰三角形,请直接写出此时t的值.

  • 24. (2017·临海模拟) 新定义函数:在y关于x的函数中,若0≤x≤1时,函数y有最大值和最小值,分别记ymax和ymin , 且满足 ,则我们称函数y为“三角形函数”.

    1. (1) 若函数y=x+a为“三角形函数”,求a的取值范围;

    2. (2) 判断函数y=x2 x+1是否为“三角形函数”,并说明理由;

    3. (3) 已知函数y=x2﹣2mx+1,若对于0≤x≤1上的任意三个实数a,b,c所对应的三个函数值都能构成一个三角形的三边长,则求满足条件的m的取值范围.

微信扫码预览、分享更方便

试卷信息