当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江西省景德镇市2016-2017学年度下学期七年级数学期末质...

更新时间:2017-07-31 浏览次数:1171 类型:期末考试
一、选择题
二、解答题
三、解答题
    1. (1) 已知n正整数,且 ,求 的值;

    2. (2)

      如图,AB、CD交于点O,∠AOE=90°,若∠AOC︰∠COE=5︰4,求∠AOD的度数.

  • 15. (2017七下·景德镇期末)

    如图,已知AD=BC,AC=BD=10,OD=4,求OA的长﹒

  • 16. (2017七下·景德镇期末) 一个水池有水60立方米,现要将水池的水排出,如果排水管每小时排出的水量为3立方米.

    1. (1) 写出水池中余水量Q(立方米)与排水时间t(时)之间的函数关系式;

    2. (2) 写出自变量t的取值范围.

  • 17. (2017七下·景德镇期末)

    仅用无刻度的直尺作出符合下列要求的图形.

    1. (1) 如图甲,在射线OP、OQ上已截取OA=OB,OE=OF.试过点O作射线OM,使得OM将∠POQ平分;

    2. (2) 如图乙,在射线OP、OQ、OR上已截取OA=OB=OC,OE=OF=OG(其中OP、OR在同一根直线上). 试过点O作射线OM、ON,使得OM⊥ON.

  • 18. (2017七下·景德镇期末) 把分别标有数字2,3,4,5的四个小球放入A袋,把分别标有数字 的三个小球放入B袋,所有小球的形状、大小、质地均相同,A、B两个袋子不透明.

    1. (1) 如果从A袋中摸出的小球上的数字为3,再从B袋中摸出一个小球,两个小球上的数字互为倒数的概率是

    2. (2) 小明分别从A,B两个袋子中各摸出一个小球,请用树状图或列表法列出所有可能出现的结果,并求这两个小球上的数字互为倒数的概率.

  • 19. (2022七下·遂川期末)

    如图,A、B两点分别位于一个池塘的两侧,池塘西边有一座假山D,在DB的中点C处有一个雕塑,小川从点A出发,沿直线AC一直向前经过点C走到点E,并使CE=CA,然后他测量点E到假山D的距离,则DE的长度就是A、B两点之间的距离.


    1. (1) 你能说明小川这样做的根据吗?

    2. (2) 如果小川恰好未带测量工具,但是知道A和假山D、雕塑C分别相距200米、120米,你能帮助他确定AB的长度范围吗?

  • 20. (2017七下·景德镇期末)

    图1中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图2所示,根据图中的信息,回答问题:

    1. (1)

      根据图2补全表格:

    2. (2) 如表反映的两个变量中,自变量是,因变量是

    3. (3) 根据图象,摩天轮的直径为m,它旋转一周需要的时间为min.

  • 21. (2017七下·景德镇期末)

    已知:∠MON=80°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x.

    1. (1) 如图1,若AB∥ON,则∠ABO的度数是

    2. (2) 如图2,当∠BAD=∠ABD时,试求x的值(要说明理由);

    3. (3) 如图3,若AB⊥OM,则是否存在这样的x值,使得△ADB中有两个相等的角?若存在,直接写出x的值;若不存在,说明理由.(自己画图)

  • 22. (2017七下·景德镇期末) 著名的瑞士数学家欧拉曾指出:可以表示为四个整数平方之和的甲、乙两数相乘,其乘积仍然可以表示为四个整数平方之和,即   ,这就是著名的欧拉恒等式,有人称这样的数为“不变心的数”.实际上,上述结论可概括为:可以表示为两个整数平方之和的甲、乙两数相乘,其乘积仍然可以表示为两个整数平方之和.

    【阅读思考】

    在数学思想中,有种解题技巧称之为“无中生有”.例如问题:将代数式 改成两个平方之差的形式.解:原式

    1. (1) 【动手一试】试将 改成两个整数平方之和的形式. (12+52)(22+72)=

    2. (2) 【解决问题】请你灵活运用利用上述思想来解决“不变心的数”问题:将代数式 改成两个整数平方之和的形式(其中a、b、c、d均为整数),并给出详细的推导过程﹒

  • 23. (2017七下·景德镇期末)

    在四边形ABDC中,AC=AB,DC=DB,∠CAB=60°,∠CDB=120°,E是AC上一点,F是AB延长线上一点,且CE=BF.

    1. (1) 试说明:DE=DF;

    2. (2) 在图中,若G在AB上且∠EDG=60°,试猜想CE、EG、BG之间的数量关系并证明此结论;

    3. (3) 若题中条件“∠CAB=60°,∠CDB=120°”改为∠CAB=α,∠CDB=180°-α,G在AB上,∠EDG满足什么条件时,(2)中结论仍然成立?(只写结果不要证明).

微信扫码预览、分享更方便

试卷信息