当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

吉林省长春市宽城区2019-2020学年九年级上学期数学期末...

更新时间:2020-02-25 浏览次数:346 类型:期末考试
一、选择题(本大题共8小题,每小题3分,共24分)
二、填空题(本大题共6小题,每小题3分,共18分)
三、解答题(本大题共10小题,共78分)
  • 16. (2020九上·宽城期末) 图、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,线段AB的端点均在格点上.在图②、图③中仿照图①,只用无刻度的直尺,各画出一条线段CD,将线段AB分为23两部分。

    要求:所画线段CD的位置不同,点C、D均在格点上。

  • 17. (2020九上·宽城期末) 如图,某课外活动小组利用一面墙(墙足够长),另三边用20m长的篱笆围成一个面积为50m2的矩形花园ABCD,求边AB、BC的长。

  • 18. (2020九上·丽水月考) 在平面直角坐标系是,抛物线y=x2+bx+c经过点(1,-2)、(2,-3)。
    1. (1) 求这条抛物线所对应的函数表达式
    2. (2) 点P是这条抛物线上一点, 其横、纵坐标互为相反数,求点P的坐标。
  • 19. (2020九上·宽城期末) 如图①,将直尺摆放在三角板上,使直尺与三角板的边分别交于点D、E、F、G,∠CGD=42°.将直尺向下平移,使直尺的边缘通过点B,交AC于点H,如图②所示。

    【参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90】

    1. (1) ∠CBH的大小为度.
    2. (2) 点H、B的读数分别为4、13.4,求BC的长.(结果精确到0.01)
  • 20. (2020九上·宽城期末) 某商店销售一种儿童玩具,进价为每件30元,物价部门规定每件儿童玩具的销售价高于进价,但不能高于进价的1.6倍。在销售过程中发现,这种儿童玩具每天的销售量y(件)与销售单价x(元)之间满足一次函数关系y=-10x+700。设每天的销售利润为w(元)。
    1. (1) 求w与x之间的函数关系式,并写出自变量x的取值范围。
    2. (2) 当销售单价为多少时,该商店销售这种儿童玩具每天获得的利润最大,最大利润是多少?
  • 21. (2020九上·宽城期末) 如图,在Rt△ABC中,∠ACB=90,D为AB的中点,以CD为直径的⊙O交BC于点E,过点E作EF⊥AB于点F。

    1. (1) 判断EF所在直线与⊙O的位置关系,并说明理由。
    2. (2) 若∠B=40°,⊙O的半径为6,求 的长。(结果保留π)
  • 22. (2020九上·宽城期末) 问题探究:三角形的角平分线是初中几何中一条非常重要的线段,它除了具有平分角、角平分线上的点到角两边的距离相等这些性质外,还具有以下的性质:

    如图①,在△ABC中,AD平分∠BAC交BC于点D,则

    提示:过点C作CE∥AD交BA的延长线于点E。

    请根据上面的提示,写出得到“ “这一结论完整的证明过程。

    结论应用:如图②2,在Rt△ABC中,∠C=90°,AC=8,BC=15,AD平分∠BAC交BC于点D。请直接利用“问题探究”的结论,求线段CD的长。

  • 23. (2020九上·宽城期末) 如图,在△ABC中,AB=AC=5,CD⊥AB于点D,CD=3。点P从点A出发沿线段AC以每秒1个单位的速度向终点C运动过点P作PQ∥AB交BC于点Q,过点P作AC的垂线,过点Q作AC的平行线,两线交于点E。设点P的运动时间为t秒。

    1. (1) 求线段PQ的长。(用含t的代数式表示)
    2. (2) 当点E落在边AB上时,求t的值。
    3. (3) 当△PQE与△ACD重叠部分图形是四边形时,直接写出t的取值范围。
  • 24. (2020九上·宽城期末) 在平面直角坐标系中,抛物线y=ax2-4ax- (a≠0)交x轴于A、B两点,交y轴于点C,这条抛物线的顶点为D。
    1. (1) 求点D的坐标。
    2. (2) 过点C作CE∥x轴交抛物线于点E,当CE=2AB时,求点D的坐标。
    3. (3) 这条抛物线与直线y=-x相交,其中一个交点的横坐标为-1,过点P(m,0)作x轴的垂线,交这条抛物线于点M,交直线y=-x于点M,且点M在点N的下方。当线段MN的长度随m的增大而增大时,求m的取值范围。
    4. (4) 点Q在这条抛物线上运动,若在这条抛物线上只存在两个点Q,满足S△ABQ=3S△ABC , 直接写出a的取值范围。

微信扫码预览、分享更方便

试卷信息