当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省泰州市泰兴市实验初级中学教育集团(联盟)2020届九年...

更新时间:2024-07-31 浏览次数:413 类型:期末考试
一、单选题
二、填空题
三、解答题
    1. (1) 计算:-24 +|1-6sin60°|+ (2016π- )0
    2. (2) 解方程: x2+3x+1= 0(配方法)
  • 18. (2020九上·泰兴期末) 为增强学生的身体素质,泰兴市教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:

    1. (1) 在这次调查中一共调查了多少名学生?
    2. (2) 求户外活动时间为1.5小时的人数,并补全频数分布直方图;
    3. (3) 求表示户外活动时间 1小时的扇形圆心角的度数;
    4. (4) 本次调查中,学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少?
  • 19. (2020九上·泰兴期末) 一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.

    棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)

  • 20. (2020九上·泰兴期末) 对钝角α,定义三角函数值如下:

    sinα=sin(180°-α),cosα=-cos(180°-α).

    1. (1) 求sin120°,cos120°的值;
    2. (2) 若一个钝角三角形的三个内角比是1:1:4,点A,B是这个三角形的两个顶点,sinA,cosB是方程4x2-mx-1=0的两个不相等的实数根,求m的值及∠A和∠B的度数.
  • 21. (2020九上·泰兴期末) 如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,则乙建筑物的高度为多少米?

  • 22. (2020九上·泰兴期末) 某玩具批发商销售每件进价为40元的玩具,市场调查发现,若以每件50元的价格销售,平均每天销售90件,单价每提高1元,平均每天就少销售3件.
    1. (1) 平均每天的销售量y(件)与销售价x(元/件)之间的函数关系式为
    2. (2) 求该批发商平均每天的销售利润W(元)与销售价x(元/件)之间的函数关系式;
    3. (3) 物价部门规定每件售价不得高于55元,当每件玩具的销售价为多少元时,可以获得最大利润?最大利润是多少元?
  • 23. (2018·江西) 如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径做圆,与BC相切于点C,过点A作AD⊥BO交BO的廷长线于点D,且∠AOD=∠BAD.

    1. (1) 求证:AB为⊙O的切线;
    2. (2) 若BC=6,tan∠ABC= ,求AD的长.
  • 24. (2020九上·泰兴期末) 在矩形ABCD中,AB=3,BC=2,以点A为旋转中心,逆时针旋转矩形ABCD,旋转角为α(0°<α<180°),得到矩形AEFG,点B、点C、点D的对应点分别为点E、点F、点G.

    1. (1) 如图①,当点E落在DC边上时,直写出线段EC的长度为
    2. (2) 如图②,当点E落在线段CF上时,AE与DC相交于点H,连接AC,

      ①求证:△ACD≌△CAE;

      ②直接写出线段DH的长度是多少?

    3. (3) 如图③设点P为边FG的中点,连接PB,PE,在矩形ABCD旋转过程中,△BEP的面积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.
  • 25. (2020九上·泰兴期末) 已知抛物线C:y1=ax2-ah(2x-h)-2,直线l:y2=k(x-h)-2.
    1. (1) 求证:直线l恒过抛物线C的顶点;
    2. (2) 当a=-1,m≤x≤2时,y1≥x-4恒成立,求m的最小值;
    3. (3) 当0<a≤3,k>0时,若在直线l下方的抛物线C上至少存在两个横坐标为整数的点,求k的取值范围.

微信扫码预览、分享更方便

试卷信息