当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

湖南省长沙市天心区明德教育集团2018-2019学年九年级下...

更新时间:2020-04-03 浏览次数:193 类型:期中考试
一、单选题
二、填空题
三、解答题
  • 21. (2019九下·天心期中) “切实减轻学生课业负担”是我市作业改革的一项重要举措.某中学为了解本校学生平均每天的课外作业时间,随机抽取部分学生进行问卷调查,并将调查结果分为A、B、C、D四个等级.A:1小时以内,B:1小时-1.5小时,C:1.5小时-2小时,D:小时以上.根据调查结果绘制了如图所示的两幅不完整的统计图.请根据图中信息解答下列问题:

    1. (1) 该校共调查了名学生;
    2. (2) 请将条形统计图补充完整;
    3. (3) 表示等级A的扇形圆心角 的度数是
    4. (4) 在此次问卷调查中,甲、乙两班各有2人平均每天课外作业时间都是2小时以上,从这4人中任选2人去参加座谈,用列表或树状图的方法求选出的2人来自不同班级的概率.
  • 22. (2019九下·天心期中) 如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.

    1. (1) 求证:AE=BF.
    2. (2) 若正方形边长是5,BE=2,求AF的长.
  • 23. (2019九下·天心期中) 某五金商店准备从机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用900元正好可以购进50个甲种零件和50个乙种零件.
    1. (1) 求每个甲种零件、每个乙种零件的进价分别为多少元?
    2. (2) 若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出该五金商店本次从机械厂购进甲、乙两种零件有哪几种方案?
  • 24. (2019九下·天心期中) 如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.

    1. (1) 求证:CG是⊙O的切线.
    2. (2) 求证:AF=CF.
    3. (3) 若sinG=0.6,CF=4,求GA的长.
  • 25. (2019九下·天心期中) 如图①,直线L:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°,得到△COD,过点A,B,D的抛物线P叫做L的关联抛物线,而L叫做P的关联直线.

    1. (1) 若L:y=-x+2,则P表示的函数解析式为;若P: ,则 表示的函数解析式为
    2. (2) 如图②,若L:y=-3x+3,P的对称轴与CD相交于点E,点F在L上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;
    3. (3) 如图③,若L:y=mx+1,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM= ,求出L,P表示的函数解析式.
  • 26. (2019·德州模拟)

    如图,已知抛物线y= x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.

    1. (1) 求抛物线的解析式;

    2. (2) 过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;

    3. (3) 当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息