在吊环比赛中,运动员有一个高难度的动作,就是先双手撑住吊环(此时两绳竖直且与肩同宽),然后身体下移,双臂缓慢张开到如图所示位置.吊环悬绳的拉力大小均为FT , 运动员所受的合力大小为F,则在两手之间的距离增大过程中( )
从地面上以初速度v0竖直上抛一质量为m的小球,若运动过程中受到的空气阻力与其速率成正比,球运动的速率随时间变化的规律如图所示,t1时刻到达最高点,再落回地面,落地速率为v1 , 且落地前小球已经做匀速运动,则在整个运动过程中,下列说法中不正确的是( )
如图所示,直线MN是某电场中的一条电场线(方向未画出).虚线是一带电的粒子只在电场力的作用下,由a运动到b的运动轨迹,轨迹为一抛物线.下列判断正确的是( )
物块M在静止的传送带上匀速下滑时,传送带突然转动,传送带转动的方向如图中箭头所示.则传送带转动后( )
如图所示,光滑小球用细绳系住,绳的另一端固定于O点.现用水平力F缓慢地拉动斜面体,小球在斜面上滑动,细绳始终处于绷紧状态.小球从图示位置开始到离开斜面前,斜面对小球的支持力N以及绳对小球拉力T的变化情况是( )
一个质点沿x轴做匀加速直线运动.其位置﹣时间图象如图所示,则下列说法正确的是( )
a、b两物体从同一位置沿同一直线运动,它们的v﹣t图象如图所示,下列说法正确的是( )
如图所示,横截面为直角三角形的斜劈A,底面靠在粗糙的竖直墙面上,力F通过球心水平作用在光滑球B上,系统处于静止状态.当力F增大时,系统还保持静止,则下列说法正确的是( )
已知当地重力加速度为g,使用交流电的频率为f.在打出的纸带上选取连续打出的五个点A、B、C、D、E,如图所示.测出A点距离起始点O的距离为s0 , A、C两点间的距离为s1 , C、E两点间的距离为s2 , 根据前述条件,如果在实验误差允许的范围内满足关系式,即验证了物体下落过程中机械能是守恒的.而在实际的实验结果中,往往会出现物体的动能增加量略小于重力势能的减小量,出现这样结果的主要原因是.
A.电压表V1(量程3V,内阻约为2kΩ)
B.电压表V2(量程15V,内阻约为15kΩ)
C.电流表A1 (量程3A,内阻约为0.2Ω)
D.电流表A2 (量程0.6A,内阻约为1Ω)
E.滑动变阻器R1(0~10Ω,0.6A)
F.滑动变阻器R2 (0~2000Ω,0.1A)
①为减小实验误差,应选用的实验器材有 (选填“A、B、C、D…”等序号).
②为减小实验误差,应选用图3中(选填“a”或“b”)为该实验的电路原理图,其测
量值比真实值(选填“偏大”或“偏小”).
如图所示,固定的水平光滑金属导轨,间距为L,左端接有阻值为R的电阻,处在方向竖直向下,磁感应强度为B的匀强磁场中.质量为m、电阻为 的导体棒与固定弹簧相连,放在导轨上,导轨的电阻不计.初始时刻,弹簧恰处于自然长度,导体棒具有水平向右的初速度v0 . 沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触.求:
如图所示,一工件置于水平地面上,其AB段为一半径R=1.0m的光滑圆弧轨道,BC段为一长度L=0.5m的粗糙水平轨道,二者相切于B点,整个轨道位于同一竖直平面内,P点为圆弧轨道上的一个确定点.一可视为质点的物块,其质量m=0.2kg,与BC间的动摩擦因数μ1=0.4.工件质量M=0.8kg,与地面间的动摩擦因数μ2=0.1.(取g=10m/s2)
①求F的大小.
②当速度v=5m/s时,使工件立刻停止运动(即不考虑减速的时间和位移),物块飞离圆弧轨道落至BC段,求物块的落点与B点间的距离.
如图甲所示,两平行金属板接有如图乙所示随时间t变化的电压U,两板间电场可看作均匀的,且两板外无电场,板长L=0.2m,板间距离d=0.2m.在金属板右侧有一边界为MN的区域足够大的匀强磁场,MN与两板中线OO′垂直,磁感应强度B=5×10﹣3T,方向垂直纸面向里.现有带正电的粒子流沿两板中线OO′连续射入电场中,已知每个粒子速度v0=105 m/s,比荷q/m=108 C/kg,重力忽略不计,在每个粒子通过电场区域的极短时间内,电场可视作是恒定不变的.