当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广西南宁市2020年数学中考一模试卷

更新时间:2024-11-06 浏览次数:285 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 20. (2020九上·成都月考) 先化简,再求值: ,其中 满足方程 .
  • 21. (2020·南宁模拟) 如图,在平面直角坐标系中,已知 的三个顶点的坐标分别为 .

    ①若 经过平移后得到 ,已知点 的坐标为 ,写出顶点 的坐标,画出

    ②若 关于原点 成中心对称图形,写出 的各顶点的坐标;

    ③将 绕着点 按顺时针方向旋转 得到 ,写出 的各顶点的坐标,并画出 .

  • 22. (2020·南宁模拟) 某公司为了到高校招聘大学生,为此设置了三项测试:笔试、面试、实习.学生的最终成绩由笔试面试、实习依次按3:2:5的比例确定.公司初选了若干名大学生参加笔试,面试,并对他们的两项成绩分别进行了整理和分析.下面给出了部分信息:

    ①公司将笔试成绩(百分制)分成了四组,分别为A组:60≤x<70,B组:70≤x<80,C组:80≤x<90,D组:90≤x<100;并绘制了如下的笔试成绩频数分布直方图.其中,C组的分数由低到高依次为:80,81,82,83,83,84,84,85,86,88,88,88,89.

    ②这些大学生的笔试、面试成绩的平均数、中位数、众数、最高分如下表:

    平均数

    中位数

    众数

    最高分

    笔试成绩

    81

    m

    92

    97

    面试成绩

    80.5

    84

    86

    92

    根据以上信息,回答下列问题:

    1. (1) 这批大学生中笔试成绩不低于88分的人数所占百分比为.
    2. (2) m=分,若甲同学参加了本次招聘,他的笔试、面试成绩都是83分,那么该同学成绩排名靠前的是成绩,理由是.
    3. (3) 乙同学也参加了本次招聘,笔试成绩虽不是最高分,但也不错,分数在D组;面试成绩为88分,实习成绩为80分由表格中的统计数据可知乙同学的笔试成绩为分;若该公司最终录用的最低分数线为86分,请通过计算说明,该同学最终能否被录用?
  • 23. (2021·恩施模拟) 如图,已知在 中, 边上一点, 的外接圆, 的直径,且交 于点 .

    1. (1) 求证: 的切线;
    2. (2) 过点 ,垂足为点 ,延长 于点 ,若 ,求 的长;
    3. (3) 在满足(2)的条件下,若 ,求 的半径及 的值.
  • 24. (2020·南宁模拟) 我市“上品”房地产开发公司于2010年5月份完工一商品房小区,6月初开始销售,其中6月的销售单价为0.7万元 ,7月的销售单价为0.72万元 ,且每月销售价格 (单位:万元 )与月份 为整数)之间满足一次函数关系:每月的销售面积为 (单位: ),其中 .( 为整数).
    1. (1) 求 与月份 的函数关系式;
    2. (2) 6~11月中,哪一个月的销售额最高?最高销售额为多少万元?
    3. (3) 2010年11月时,因会受到即将实行的“国八条”和房产税政策的影响,该公司销售部预计12月份的销售面积会在11月销售面积基础上减少 ,于是决定将12月份的销售价格在11月的基础上增加 ,该计划顺利完成.为了尽快收回资金,2011年月公司进行降价促销,该月销售额为 万元.这样12月、1月的销售额共为4618.4万元,请根据以上条件求出 的值为多少?
  • 25. (2020·南宁模拟) 菱形 中, 为边 上的点, 相交于点 .

    1. (1) 如图1,若 ,求证:
    2. (2) 如图2,若 .求证:
    3. (3) 如图3,在(1)的条件下,平移线段 ,使 的中点,连接 于点 ,若 ,请直接写出 的长度.
  • 26. (2020九上·平邑期末) 如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).

    1. (1) 求抛物线的函数解析式;
    2. (2) 点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;
    3. (3) 在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.

微信扫码预览、分享更方便

试卷信息