当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

四川省成都市大邑县2019-2020学年九年级上学期数学期中...

更新时间:2024-07-13 浏览次数:218 类型:期中考试
一、单选题
二、填空题
三、解答题
  • 21. (2019九上·大邑期中) 若关于x的方程 是一元二次方程
    1. (1) 求常数m的值.
    2. (2) 在(1)的条件下,若该一元二次方程有两个不相等的实数根,求常数k的取值范围.
  • 22. (2019九上·大邑期中) 如图,方格纸中的每个小正方格都是边长为1的正方形,我们把以格点间连接为边的三角形称为“格点三角形”,图中的 就是格点三角形,在建立平面直角坐标系后,O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1)

    1. (1) 以O点为位似中心在 轴的左侧将△OBC放大两倍(即新图与原图的相似比为2),在该坐标系中画出图形;
    2. (2) 分别写出B、C两点的对应点B′、C′的坐标;
    3. (3) 如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.
  • 23. (2019九上·大邑期中) 中秋佳节我国有赏月和吃月饼的传统,某校数学兴趣小组为了了解本校学生喜爱月饼的情况,随机抽取了40名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图.(注:参与问卷调查的每一位同学在任何一种分类统计中只有一种选择),请根据统计图完成下列问题:

    1. (1) 被调查的40名同学中,“很喜欢”;月饼的学生有人;条形统计图中,喜欢“豆沙”月饼的学生有人;并补全条形统计图;
    2. (2) 若该校共有学生800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”月饼的共有人.
    3. (3) 甲同学最爱吃云腿月饼,现有重量、包装完全一样的云腿(A)、豆沙(B)、莲蓉(C)、蛋黄(D)四种月饼各一个,让甲任意选两个,请用画树状图法或列表法,求出甲选中的月饼都不是他最爱吃的云腿月饼(A)的概率.
  • 24. (2019九上·大邑期中) 学习了相似三角形的知识后,爱探究的小明下晚自习后利用路灯的光线去测量了一路灯的高度,并作出了示意图:如图,路灯(点P)距地面若干米,身高1.6米的小明站在距路灯的底部(O点)20米的A点时,身影的长度AM为5米;

    1. (1) 请帮助小明求出路灯距地面的高度;
    2. (2) 若另一名身高为1.5米小龙站在直线OA上的C点时,测得他与小明的距离AC为7米,求小龙的身影的长度.
  • 25. (2019九上·大邑期中) 已知:如图,在直角三角形ABC中,∠ACB=90°,BC的垂直平分线交BC点D,交AB于点E,过点A作AF∥CE交直线DE于点F.

    1. (1) 求证:四边形ACEF是平行四边形;
    2. (2) 当∠B的大小满足什么条件时,四边形ACEF是菱形?请证明你的结论;
    3. (3) 四边形ACEF有可能是矩形吗?请说明理由.
  • 26. (2019九上·大邑期中) 国美商场销售某种冰箱,每台进货价为2500元.调查发现,当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.
    1. (1) 如果设每台冰箱降价x元,平均每天销售冰箱的数量为y,请直接表示出y与x的函数关系式;
    2. (2) 如果商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?
  • 27. (2019九上·大邑期中) 如图1,在平面直角坐标系中,矩形OABC的顶点O为原点,AB=8,BC=10,E为AB上一点,把△CBE沿CE折叠,使点B恰好落在边上的点D处,

    1. (1) 求AE的长;
    2. (2) 如图2,将∠CDE绕着点D逆时针旋转一定的角度,使角的一边DE刚好经过点B,另一边与y轴交于点F,求点F的坐标;
    3. (3) 在(2)的条件下,在平面内是否存在一点P,使以点C、D、F、P为顶点的四边形是平行四边形.若存在,直接写出点P的坐标;若不存在,请通过计算说明理由.
  • 28. (2019九上·大邑期中) 已知:菱形ABCD,AB=4m,∠B=60°,点P、Q分别从点B、C同时出发,沿线段BC、CD以1m/s的速度向终点C、D运动,运动时间为t秒.

     

    1. (1) 如图1,连接AP、AQ、PQ,试判断△APQ的形状,并说明理由
    2. (2) 如图2,当t=1.5秒时,连接AC,与PQ相交于点K.求AK的长.
    3. (3) 如图3,连接AC交BD于点O,当P、Q分别运动到点C、D时,将∠APQ沿射线CA方向平移,使点P与点O重合,然后以点O为旋转中心将∠APQ旋转一定的角度,使角的两边分别于CD、AD交于S、K点,再以OS为一边在∠SOC内作∠SOT,使∠SOT=∠BDC,OT边交BC的延长线于点T,若BT=4.8,求AK的长.

微信扫码预览、分享更方便

试卷信息