当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山东省泰安市新泰市2019-2020学年九年级上学期数学期末...

更新时间:2020-12-22 浏览次数:307 类型:期末考试
一、单选题
二、填空题
三、解答题
    1. (1) 计算: sin45°+cos230°•tan60°﹣tan45°;
    2. (2) 已知是锐角, ,求
  • 20. (2020九上·新泰期末) 在一次数学兴趣小组活动中,阳光和乐观两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则阳光获胜,反之则乐观获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).

    1. (1) 请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;
    2. (2) 游戏对双方公平吗?请说明理由.
  • 21. (2020九上·新泰期末) 如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,点C坐标为(﹣1,0),点A坐标为(0,2).一次函数y=kx+b的图象经过点B、C,反比例函数y= 的图象经过点B.

    1. (1) 求一次函数和反比例函数的关系式;
    2. (2) 直接写出当x<0时,kx+b﹣ <0的解集;
    3. (3) 在x轴上找一点M,使得AM+BM的值最小,直接写出点M的坐标和AM+BM的最小值.
  • 22. (2020九上·新泰期末) 如图,某仓储中心有一斜坡AB,其坡比为i=1∶2,顶部A处的高AC为4 m,B,C在同一水平面上.

    1. (1) 求斜坡AB的水平宽度BC;
    2. (2) 矩形DEFG为长方形货柜的侧面图,其中DE=2.5 m,EF=2 m.将货柜沿斜坡向上运送,当BF=3.5 m时,求点D离地面的高.( ≈2.236,结果精确到0.1 m)
  • 23. (2020九上·新泰期末) 一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:

    x

    3000

    3200

    3500

    4000

    y

    100

    96

    90

    80

    1. (1) 观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.
    2. (2) 已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:

      租出的车辆数

      未租出的车辆数

      租出每辆车的月收益

      所有未租出的车辆每月的维护费

    3. (3) 若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.
  • 24. (2020九上·新泰期末) 如图,AB是€⊙O的直径,点C是€€⊙O上一点,AC平分∠DAB,直线DC与AB的延长线相交于点P,AD与PC延长线垂直,垂足为点D,CE平分∠ACB,交AB于点F,交€€⊙O于点E.

    1. (1) 求证:PC与⊙O相切;
    2. (2) 求证:PC=PF;
    3. (3) 若AC=8,tan∠ABC= ,求线段BE的长.
  • 25. (2020九上·新泰期末) 如图,抛物线y=﹣ x2+ x+2与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线1交抛物线于点Q.

    1. (1) 求点A、点B、点C的坐标;
    2. (2) 当点P在线段OB上运动时,直线1交直线BD于点M,试探究m为何值时,四边形CQMD是平行四边形;
    3. (3) 点P在线段AB上运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息