当前位置: 初中数学 /苏科版(2024) /七年级下册(2024) /第10章 二元一次方程组 /10.4 三元一次方程组
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

初中数学苏科版七年级下册 10.4 三元一次方程组 同步训练

更新时间:2021-03-12 浏览次数:189 类型:同步测试
一、单选题
二、填空题
三、解答题
  • 19. 解三元一次方程组:
    1. (1)
    2. (2)
  • 20. (2020七下·乌兰浩特期末) 在等式y=ax2+bx+c中,当x=﹣1时,y=3;当x=0时,y=1,当x=1时,y=1,求这个等式中a、b、c的值.
  • 21. 若a,b,c表示三角形的三边,此三角形的周长是18,且a+b=2c,b=2a,求三边长.
  • 22. 有三个数,第一个数的3倍比第二个数的5倍小90,而第一个数的4倍与第二个数的6倍之差等于第三个数的20倍的相反数,同时,第三个数比4大1.求这三个数.
  • 23. (2024八上·岳阳开学考) 一个三位数,如果把它的个位数字与百位数字交换位置,那么所得的新数比原数小99,且各位数字之和为14,十位数字是个位数字与百位数字之和.求这个三位数.
  • 24. 某学校计划用104 000元购置一批电脑(这批款项须恰好用完,不得剩余或追加).经过招标,其中平板电脑每台1600元,台式电脑每台4000元,笔记本电脑每台4600元.

    (1)若学校同时购进其中两种不同类型的电脑共50台,请你帮学校设计该如何购买;

    (2)若学校同时购进三种不同类型的电脑共26台(三种类型的电脑都有),并且要求笔记本电脑的购买量不少于15台,请你帮学校设计购买方案.

  • 25. 2013年4月20日8时2分在四川省雅安市芦山县发生7.0级地震,有1.8万人等待安置,各地人民纷纷捐款灾区.某市一企业在得知灾区急需帐篷后立即与厂家联系购买帐篷送往灾区.已知用9万元刚好可以从厂家购进帐篷500顶.该厂家生产三种不同规格的帐篷,出厂价分别为甲种帐篷每顶150元,乙种帐篷每顶210元,丙种帐篷每顶250元.

    ①若企业同时购进其中两种不同规格的帐篷,则企业的购买方案有哪几种?

    ②若企业想同时购进三种不同规格的帐篷,必须每种帐篷都有,为了便于分类打包,每种帐篷数都要求是10的倍数.请你研究一下是否可行?如果可行请给出符合条件的设计方案;若不可行,请说明理由.

  • 26. (2019七下·广丰期末) 有一场足球比赛,共有九支球队参加,采取单循环赛,其记分和奖励方案如下表:

    标准

    胜一场

    平一场

    负一场

    积分

    3

    1

    0

    奖励(元/人)

    2000

    800

    0

    甲队参加完了全部8场比赛,共得积分16分.

    1. (1) 求甲队胜负的所有可能情况;
    2. (2) 若每一场比赛,每一个参赛队员均可得出场费500元,求甲队参加了所有8场比赛的队员的个人总收入(奖金加上出场费).
  • 27. (2019七下·鼓楼期中) 解二元一次方程组的关键是“消元”,即把“二元”转化为“一元”,同样,我们可以用“消元”的方法解三元一次方程组.下面,我们就来解一个三元一次方程组:

    解方程组

    小曹同学的部分解答过程如下:

    解:______+______,得3x+4y=10,④

    ______+______,得5x+y=11,⑤

    ______与______联立,得方程组

     

    1. (1) 请你在方框中补全小曹同学的解答过程:
    2. (2) 若m、n、p、q满足方程组 ,则m+n-2p+q=
  • 28. (2022七下·义乌月考) 某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x,y台,其中每台的价格、销售获利如下表:

    甲型

    乙型

    丙型

    价格(元/台)

    1000

    800

    500

    销售获利(元/台)

    260

    190

    120

    1. (1) 购买丙型设备台(用含x,y的代数式表示);
    2. (2) 若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?
    3. (3) 在第(2)题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?

微信扫码预览、分享更方便

试卷信息