当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省湖州市五中2021届数学中考一模试卷

更新时间:2024-07-13 浏览次数:365 类型:中考模拟
一、选择题(本大题共10小题,共30分)
二、填空愿(本大题共6小题,共24分)
三、解答题(本大题8小题,共66分)
  • 18. (2021·湖州模拟) 先化简,再求值 ,其中x为整数且满足不等式组 .
  • 19. (2021·湖州模拟) 如图,已知BE⊥AD,CF⊥AD,且BE=CF.

    1. (1) 请你判断AD是△ABC的中线还是角平分线?说明你判断的理由.
    2. (2) 连接BF,CE,求证:四边形BECF是平行四边形.
  • 20. (2021·湖州模拟) 为了解学生对篮球、羽毛球、乒乓球、踢毽子、跳绳等5项体育活动的喜欢程度,某校随机抽查部分学生,对他们最喜欢的体育项目(每人只选一项)进行了问卷调查,并将统计数据绘制成如下两幅不完整的统计图:

    请解答下列问题:

    1. (1) m=%,这次共抽取了名学生进行调查;请补全条形统计图;
    2. (2) 若全校有800名学生,则该校约有多少名学生喜爱打篮球?
    3. (3) 学校准备从喜欢跳绳活动的4人(二男二女)中随机选取2人进行体能测试,求抽到一男一女学生的概率是多少?
  • 21. (2021·湖州模拟) 如图,在等腰直角三角形ABC中,∠ABC=90°,AB=BC=4,⊙B与AB、BC交于E、F,点P是弧EF上的一个动点,连接PC,线段PC绕P点逆时针旋转90°到PD,连接CD,AD.

    1. (1) 求证:△BPC∽△ADC;
    2. (2) 当四边形ABCD满足AD∥CB且是面积为12时,求⊙B的半径.
  • 22. (2021·湖州模拟) 某手机专卖店销售A,B两种型号的手机,如表是近两周的销售情况:

    销售时段

    销售数量

    销售利润

    A型

    B型

    第一周

    3台

    5台

    1800元

    第二周

    4台

    10台

    3000元

    1. (1) 求每台A型手机和B型手机的销售利润;
    2. (2) 该手机专卖店计划一次购进两种型号的手机共100台,其中A型号手机的进货量不超过B型号手机进货量的2倍.设购进A型号手机x台,这100台手机的销售总利润为y元.

      ①求y关于x的函数表达式;

      ②该商店购进A型号和B型号手机各多少台,才能使销售总利润最大?

    3. (3) 实际进货时,厂家对A型号手机的出厂价提高a(0<a<100)元,对B型号手机的出厂价下降a(0<a<100)元,且限定该手机专卖店至少购进A型号手机20台.若该手机专卖店保持两种手机的售价不变,请根据以上信息及(2)中条件,设计出使这100台手机销售总利润最大的进货方案.
  • 23. (2021·湖州模拟) 如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,﹣3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.

    1. (1) 求抛物线的函数表达式;
    2. (2) 点E为y轴上一动点.

      ①若CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限,当线段PQ= AB时,求∠CED的正切值;

      ②若点G是直线x=1上一点,当△CEG与△AOC相似时,请直接写出点E的坐标.

  • 24. (2021·湖州模拟) AB为⊙O的直径,弦CD⊥AB,垂足为H,F为弧BC上一点,且∠FBC=∠ABC,连接DF,分别交BC、AB于E、G.

    1. (1) 如图1,求证:DF⊥BC;
    2. (2) 如图2,连接EH,过点E作EM⊥EH,EM交⊙O于点M,交AB于点N.

      ①求证:EN=GN;

      ②连接OC,求证:△CHO≌△HEN.

微信扫码预览、分享更方便

试卷信息