当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省泰州市泰兴市西城中学2017年中考数学三模试卷

更新时间:2024-07-31 浏览次数:320 类型:中考模拟
一、选择题
二、填空题
三、解答题
  • 17. (2017·泰兴模拟) 计算或解方程:
    1. (1) (﹣ 2+|3tan30°﹣1|﹣(π﹣3)°;
    2. (2) = ﹣3.
  • 18. (2017·泰兴模拟) 近年来,学校对“在初中数学教学时总使用计算器是否直接影响学生计算能力的发展”这一问题密切关注,为此,某校随机调查了n名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果绘制成如下不完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题:

    n名学生对这一问题的看法人数统计表

    看法

    没有影响

    影响不大

    影响很大

    学生人数(人)

    40

    60

    m

    1. (1) 求n的值;
    2. (2) 统计表中的m=
    3. (3) 估计该校1800名学生中认为“影响很大”的学生人数.
  • 19. (2017·泰兴模拟) 在一个不透明袋子中有1个红球和3个白球,这些球除颜色外都相同.
    1. (1) 从袋中任意摸出2个球,用树状图或列表求摸出的2个球颜色不同的概率;
    2. (2) 在袋子中再放入x个白球后,进行如下实验:从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀.经大量试验,发现摸到白球的频率稳定在0.95左右,求x的值.
  • 20. (2017·泰兴模拟) 学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.
  • 21. (2017·泰兴模拟) 写出下列命题的已知、求证,并完成证明过程.

    命题:如果一个三角形的两条边相等,那么两条边所对的角也相等(简称:“等边对等角”.)

    已知:(   ).

    求证:(   ).

    证明:

  • 22. (2017·泰兴模拟) 如图,物理实验室有一单摆在左右摆动,摆动过程中选取了两个瞬时状态,从C处测得E,F两点的俯角分别为∠ACE=60°,∠BCF=45°,这时点F相对于点E升高了4cm.求该摆绳CD的长度.(精确到0.1cm,参考数据: ≈1.41, ≈1.73)

  • 23. (2017·泰兴模拟) 如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线的最高点到路面的距离为6米.

    1. (1) 按如图所示建立平面直角坐标系,求表示该抛物线的函数表达式;
    2. (2) 一辆货运卡车高为4m,宽为2m,如果该隧道内设双向车道,那么这辆货车能否安全通过?
  • 24. (2017·泰兴模拟) 如图,在等边△ABC中,M是边BC延长线上一点,连接AM交△ABC的外接圆于点D,延长BD至N,使得BN=AM,连接CN、MN,

    1. (1) 求证:△CMN是等边三角形;
    2. (2) 判断CN与⊙O的位置关系,并说明理由;
    3. (3) 若AD:AB=3:4,BN=4,求等边△ABC的边长.
  • 25. (2017·泰兴模拟) 如图1,矩形ABCD中,P是AB边上的一点(不与A,B重合),PE平分∠APC交射线AD于E,过E作EM⊥PE交直线CP于M,交直线CD于N.

    1. (1) 求证:CM=CN;
    2. (2) 若AB:BC=4:3,

      ①当 =时,E恰好是AD的中点;
      ②如图2,当△PEM与△PBC相似时,求 E N E M 的值. 

  • 26. (2017·泰兴模拟) 如图1,已知一次函数y=ax+2与x轴、y轴分别交于点A,B,反比例函数y= 经过点M.

    1. (1) 若M是线段AB上的一个动点(不与点A、B重合).当a=﹣3时,设点M的横坐标为m,求k与m之间的函数关系式.
    2. (2) 当一次函数y=ax+2的图象与反比例函数y= 的图象有唯一公共点M,且OM= ,求a的值.
    3. (3) 当a=﹣2时,将Rt△AOB在第一象限内沿直线y=x平移 个单位长度得到Rt△A′O′B′,如图2,M是Rt△A′O′B′斜边上的一个动点,求k的取值范围.

微信扫码预览、分享更方便

试卷信息