当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京市房山区2021届高三数学一模试卷

更新时间:2021-04-25 浏览次数:138 类型:高考模拟
一、单选题
二、填空题
三、双空题
四、解答题
  • 16. (2021·房山模拟) 如图,在直三棱柱 中,已知 上一点,且 .

    1. (1) 求证:平面 平面
    2. (2) 求直线 与平面 所成角的正弦值.
  • 17. (2021·房山模拟) 中, ,再从条件①、条件②、条件③这三个条件中选择一个作为已知,求:
    1. (1) 的值;
    2. (2) 的面积.

      条件①: 边上的高为 ;条件②: ;条件③: .

      注:如果选择多个条件分别解答,按第一个解答计分.

  • 18. (2021·房山模拟) 单板滑雪型池比赛是冬奥会比赛中的一个项目,进入决赛阶段的名运动员按照预赛成绩由低到高的出场顺序轮流进行三次滑行,裁判员根据运动员的腾空高度、完成的动作难度和效果进行评分,最终取单次最高分作为比赛成绩.现有运动员甲、乙二人在2021赛季单板滑雪 型池世界杯分站比赛成绩如下表:

    分站

    运动员甲的三次滑行成绩

    运动员乙的三次滑行成绩

    第1次

    第2次

    第3次

    第1次

    第2次

    第3次

    第1站

    80.20

    86.20

    84.03

    80.11

    88.40

    0

    第2站

    92.80

    82.13

    86.31

    79.32

    81.22

    88.60

    第3站

    79.10

    0

    87.50

    89.10

    75.36

    87.10

    第4站

    84.02

    89.50

    86.71

    75.13

    88.20

    81.01

    第5站

    80.02

    79.36

    86.00

    85.40

    87.04

    87.70

    假设甲、乙二人每次比赛成绩相互独立.

    1. (1) 从上表5站中随机选取1站,求在该站运动员甲的成绩高于运动员乙的成绩的概率;
    2. (2) 从上表5站中任意选取2站,用 表示这2站中甲的成绩高于乙的成绩的站数,求 的分布列和数学期望;
    3. (3) 假如从甲、乙2人中推荐1人参加2022年北京冬奥会单板滑雪 型池比赛,根据以上数据信息,你推荐谁参加,并说明理由.

      (注:方差 ,其中 ,…, 的平均数)

  • 19. (2021·房山模拟) 已知函数 .
    1. (1) 求曲线 在点 处的切线方程;
    2. (2) 若 ,求证:
    3. (3) 设 ,是否存在唯一的自然数 ,使得 的图象在区间 上有两个不同的公共点?若存在,试求出 的值,若不存在,请说明理由.
  • 20. (2021·房山模拟) 已知椭圆 过点 ,离心率为 .
    1. (1) 求椭圆 的方程;
    2. (2) 设点 为椭圆 的上顶点, 是椭圆 上两个不同的动点(不在 轴上),直线 的斜率分别为 ,且 ,求证:直线 过定点 .
  • 21. (2021·房山模拟) 对于数列 ,记 ,其中 表示 个数中最大的数,并称数列 的“控制数列”,如数列 的“控制数列”是 .
    1. (1) 若各项均为正整数的数列 的“控制数列”为 ,写出所有的
    2. (2) 设 .

      (i)当 时,证明:存在正整数 ,使得 是等差数列;

      (ii)当 时,求 的值(结果可含 ).

微信扫码预览、分享更方便

试卷信息