当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

辽宁省丹东市2021届高三数学二模试卷

更新时间:2021-06-07 浏览次数:150 类型:高考模拟
一、单选题
二、多选题
  • 9. (2021·丹东模拟) 晚上睡眠充足是提高学习效率的必要条件,河北衡水某高中的高三年级学生晚上10点10分必须休息,另一所同类高中的高三年级学生晚上11点休息,并鼓励学生还可以继续进行夜自习,稍晚再休息.有关人员分别对这两所高中的高三年级学习总成绩前50名学生的学习效率进行问卷调查,其中衡水某高中有30名学生的学习效率高,且从这100名学生中随机抽取1人,抽到学习效率高的学生的概率是0.4,则(    )

    附:

    P(K2≥k0

    0.050

    0.010

    0.005

    0.001

    k0

    3.841

    6.635

    7.879

    10.828

    A . 衡水某高中的前50名学生中有60%的学生学习效率高 B . 另一所同类高中的前50名学生中有40%的学生学习效率高 C . 有99.9%的把握认为“学生学习效率高低与晚上睡眠是否充足有关” D . 认为“学生学习效率高低与晚上睡眠是否充足有关”的犯错概率超过0.05
  • 10. (2021·丹东模拟) 设数列 的前 项和 为常数),则下列命题中正确的是(    )
    A . ,则 不是等差数列 B . ,则 是等差数列 C . ,则 是等比数列 D . ,则 是等比数列
  • 11. (2021·丹东模拟) 已知双曲线 的离心率为 分别为 的左右焦点,点 上,且 ,则(    )
    A . B . C . D .
  • 12. (2021·丹东模拟) 已知 为正方体 的棱 的中点,平面 过点 且与 垂直,且 与直线 相交于点 ,则(    )
    A . 直线 与直线 垂直 B . 是线段 的三等分点 C . 直线 与平面 所成角的正弦值为 D . 平面 将正方体分割成体积比为 的两部分
三、填空题
四、解答题
  • 17. (2021·丹东模拟) 中药藿香产业化种植已经成为某贫困山区农民脱贫攻坚的重要产业之一,藿香在环境温度为15~28℃时生长旺盛,环境温度高于28℃或低于15℃时生长缓慢或停止.藿香的株高 (单位:cm)与生长期内环境温度 (单位:℃)中的 有关,现收集了13组藿香生长期内环境温度中的 和株高 ,2,…,13)观测数据,得到如图所示的 散点图.

    根据散点图判断,可以利用模型 建立 关于 的回归方程,令 ,统计处理得到一些数据: 的线性相关系数 的线性相关系数 .用线性相关系数说明上面的两种模型哪种适宜作为 关于 的回归方程,并求这种模型的回归方程,由此预测这种中药藿香在生长期内的环境温度为20℃时的株高(株高精确到1).

    附:对于一组数据 ,2,3,…, ),其回归直线 的斜率和截距的最小二乘估计分别为

  • 18. (2021·丹东模拟) 在等差数列 中,
    1. (1) 求 的通项公式;
    2. (2) 证明:
  • 19. (2021·丹东模拟) 如图,在空间几何体 中,平面 平面 平面 都是以 为底的等腰三角形, 的中点,

    1. (1) 证明:点 在平面 内;
    2. (2) 已知 ,求二面角 的余弦值.
  • 20. (2021·丹东模拟) ,函数 上是减函数.
    1. (1) 求
    2. (2) 比较 的大小.
  • 21. (2021·丹东模拟) 已知点 ,动点 满足直线 的斜率之积为 ,记 的轨迹为曲线
    1. (1) 求 的方程,并说明 是什么曲线;
    2. (2) 经过点 的直线 相交于 两点,求 的最大值.
  • 22. (2021·丹东模拟) 已知函数
    1. (1) 讨论 的单调性;
    2. (2) 当 时,证明:

微信扫码预览、分享更方便

试卷信息