当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广东省广州市天河区2021届高三数学三模试卷

更新时间:2024-07-13 浏览次数:125 类型:高考模拟
一、单选题
二、多选题
  • 9. (2021·天河模拟) 下列命题正确的是(    )
    A . 两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1 B . 对具有线性相关关系的变量x、y,有一组观测数据 ,其线性回归方程是 ,且 ,则实数 的值是 C . 已知样本数据 的方差为4,则 的标准差是4 D . 已知随机变量 ,若 ,则
  • 10. (2021·天河模拟) 关于空间两条不同直线 和两个不同平面 ,下列命题正确的是(    )
    A . ,则 B . ,则 C . ,则 D . ,则
  • 11. (2023高三上·汕头期中) 在平面直角坐标系 中,已知双曲线 的离心率为 ,B分别是双曲线C的左,右顶点,点P是双曲线C的右支上位于第一象限的动点,记 的斜率分别为 ,则(    )
    A . 双曲线C的焦点到其一条渐近线的距离为1时,双曲线C的方程为 B . 双曲线C的渐近线方程为 C . 为定值 D . 存在点P,使得
  • 12. (2021·天河模拟) 将函数 的图象向右平移 个单位长度后得到函数 的图象,且 ,则下列说法正确的是(    )
    A . 为奇函数 B . C . 时, 上有4个极值点 D . 上单调递增,则ω的最大值为5
三、填空题
四、解答题
  • 17. (2021·天河模拟) 中,角 所对的边分别是 ,已知
    1. (1) 求角A的值;
    2. (2) 若 的面积 ,求 的值
  • 18. (2021·天河模拟) 已知正项数列 为数列 的前 项和,且满足
    1. (1) 分别求数列 的通项公式;
    2. (2) 将数列 中与数列 相同的项剔除后,按从条到大的顺序构成数列 ,记数列 的前 项和为 ,求
  • 19. (2021·天河模拟) 工厂经市场调研和科学研判,准备大规模生产某高科技产品的一个核心部件,目前只有某甲、乙两种设备可以独立生产该部件.如图是从甲设备生产的部件中随机抽取400件,对其核心部件的尺寸x(单位:mm),进行统计整理的频率分布直方图.根据行业质量标准规定,该核心部件尺寸x满足: 为一级品, 为二级品, 为三级品

    1. (1) 现根据频率分布直方图中的分组,用分层抽样的方法先从这400件样本中抽取40件产品,若从这40件产品中随机抽取2件产品,记Y为这2件产品中一级品的个数,求Y的分布列和数学期望;
    2. (2) 为增加产量,工厂需增购设备,已知这种产品的利润如下:一级品的利润为500元/件;二级品的利润为400元/件;三级品的利润为200元/件.乙设备生产的产品中一、二、三级品的概率分别是 ,若将甲设备生产的产品的样本频率作为总体的概率.以工厂的利润作为决策依据,应选购哪种设备,请说明理由.
  • 20. (2021·天河模拟) 如图,在棱柱 中,底面 为平行四边形, ,且 在底面上的投影 恰为 的中点.

    1. (1) 过 作与 垂直的平面 ,交棱 于点 ,试确定点 的位置,并说明理由;
    2. (2) 若二面角 ,求棱柱 的体积.
  • 21. (2021·天河模拟) 已知椭圆 的离心率为 ,以原点为圆心,椭圆的长半轴长为半径的圆截直线 所得弦长为
    1. (1) 求椭圆 的方程;
    2. (2) 设 为椭圆上一点,若过点 的直线与椭圆 相交于 两点,且满足 为坐标原点 ,当 时,求实数 的取值范围.
  • 22. (2021·天河模拟) 已知函数 .
    1. (1) 讨论函数 的单调性;
    2. (2) 若 恒成立,求实数 的取值范围.

微信扫码预览、分享更方便

试卷信息