当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省温州市乐清市八校2021年九年级学业水平第二次模拟考试...

更新时间:2021-06-15 浏览次数:342 类型:中考模拟
一、 选择题(本题有10小题,每小题4分,共40分。)
二、填空题(本题有6小题,每小题5分,共30分)
三、解答题(本题有8小题,共80分)
    1. (1) 计算:|-3|+(1- )0- -(-2)
    2. (2) 化简:(a-3)2-a(a+8)
  • 18. (2021·乐清模拟) 如图,AD,BC相交于点O,OA=OB,∠C=∠D=90°

    1. (1) 求证:△ACB≌△BDA
    2. (2) 当AC=3,AB=5时,求OD的长
  • 19. (2021·乐清模拟) 某公司销售部有营销人员15人,为了对达到或者超出月销售定额的员工进行表彰,统计了这15人某月的销售量(单位:件)如下:

    每人销售件数

    1400

    880

    270

    150

    130

    120

    人数

    1

    1

    3

    6

    3

    1

    1. (1) 求这15位营销人员该月销售量的平均数;


    2. (2) 假设销售负贵人把月销售定额定为280件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由。
  • 20. (2021·乐清模拟) 如图,在7×5的方格纸中,每个小正方形的边长为1,△ABC的顶点A,B,C均落在格点上,请利用-把无刻度直尺作图,并保留作图痕迹.

    1. (1) 在图1中画出BC边上的中线AD。
    2. (2) 在图2中,E是线段AB上一点,AE= 。画出一个四边形AECF (点F在网格线上),使这个四边形为平行四边形。
  • 21. (2021·乐清模拟) 在平面直角坐标系中,已知点A(4,-1),B(4,3),C(6,5),抛物线y=ax2+bx-1恰好经过A,B,C三点中的两点。
    1. (1) 求抛物线的函数表达式。
    2. (2) D是射线AB上一点,过点D作x轴的平行线交抛物线于点E(m,y1),F(n,y1),点E在F的左边。若m+n=4FD,求点E的坐标。
  • 22. (2021·乐清模拟) 如图,AB是⊙O的直径,弦CD⊥AB于点H,G是 上一点,连结BC,AG,GD。AG分别交CD,BC于点E,F。已知AE=CE。

    1. (1) 求证:C是 的中点。
    2. (2) 若AB=13,tanD= ,求DG的长。
  • 23. (2021·乐清模拟) 目前我国新冠病毒疫情有很大好转,但是防疫不能放松,某物业公司向超市购买A、B、C三种型号的消毒湿巾分别分给第一周、第二周、第三周工作的员工使用,每人每周1包,这三周员工人数之和为100人已知购买1包A型湿巾和2包B型湿巾共需要130元购买2包A型湿巾和3包B型湿巾共需要220元,已知C型湿巾每包10元,第一周员工人数<第二周员工人数<第三周员工人数。
    1. (1) 求A型湿巾和B型湿巾的单价。
    2. (2) 该超市促销方案如下:每购买1包A型湿巾则赠送2包C型湿巾。

      ①若公司购买了第-周所需的A型湿巾后,赠送的C型湿巾刚好够第三周使用,求物业公司购买三种湿巾所需总金额的最小值。

      ②若第三周需要的C型湿巾除了赠送外,还需另外购买,最终三种湿巾总共花费了2560元,求所有满足要求的购买方案。

  • 24. (2021·乐清模拟) 如图,在菱形ABCD中,已知AB=6,∠ABC=60°,点E,点F分别在AD与CD的延长线上,连结EF,DE=DF,连结BF交AD于点N,H是BF的中点,连结CH并延长交AD于点M,交BA的延长线于点G。

    1. (1) 求证:AG=DF。
    2. (2) 若DE=3。

      ①求AM与BN的值。

      ②点P是线段BN或线段CM上一点,当△PMN是以MN为腰的等腰三角形时,求所有满足条件的PH的值。

    3. (3) 连结AC,HE,将点M绕着点H旋转60°得到点K,当点K恰好落在AC上时,求△KHC与△MHE的面积之比。

微信扫码预览、分享更方便

试卷信息