当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省湖州市2020-2021学年八年级下学期数学期中考试试...

更新时间:2024-07-13 浏览次数:229 类型:期中考试
一、选择题(本题有10小题,每小题3分,共30分)
二、填空题(本题有6小题,每小题4分,共24分)
三、解答题(本大题共7小题,共66)
  • 19. (2021八下·湖州期中) 已知:如图,在四边形ABCD中,AB//CD,E、F为对角线AC上两点,且AE=CF,DF//BE.求证:四边形ABCD是平行四边形.

  • 20. (2021八下·湖州期中) 如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.

  • 21. (2021八下·湖州期中) 某校德育处积极开展“预防新冠病毒知识知多少”宣传活动,组织举办了一次防病毒知识竞赛,本次竞赛满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀.在这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.

    组别

    平均分

    中位数

    方差

    合格率

    优秀率

    甲组

    6.8

    a

    3.76

    90%

    30%

    乙组

    b

    7.5

    1.96

    80%

    20%

    解答下列问题:

    1. (1) 填空:a=;b=.
    2. (2) 小敏说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上.”观察上面表格后思考判断,小敏属于(填“甲”或“乙”)组的学生.
    3. (3) 甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩比乙组好.但乙组同学不同意甲组同学的说法,认为他们的成绩要好于甲组请你写出两条支持乙组同学观点的理由.
  • 22. (2021八下·湖州期中) 有一种螃蟹,从海上捕获后不放养最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也会有一定数量的螃蟹死去,假设放养期间内螃蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种活螃蟹1000kg放养在塘内,此时市场价为30元/kg.据测算此后每千克的活蟹的市场价每天可上升1元,但是,放养一天各种费用支出400元,且平均每天还有10 kg的蟹死去,假定死蟹均于当天全部售出,售价都是20元/kg .
    1. (1) 设x天后每千克活蟹的市场价为p元,请写出p关于x的函数关系式;
    2. (2) 如果经销商将这批蟹出售后能获利6250元,那么他应放养多少天后再一次性售出?
  • 23. (2021八下·湖州期中) 如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD.

    1. (1) 若∠A=28°,求∠ACD的度数.
    2. (2) 设BC=a,AC=b.

      ①线段AD的长是方程x2+2ax﹣b2=0的一个根吗?说明理由.

      ②若AD=EC,求 的值.

  • 24. (2021八下·湖州期中) 我们规定:有一组邻边相等,且这组邻边的夹角为60°的凸四边形叫做“准筝形”.

    1. (1) 如图1,在四边形ABCD中,∠A+∠C=270°,∠D=30°,AB=BC,求证:四边形ABCD是“准筝形”;
    2. (2) 小军同学研究 “准筝形”时,思索这样一道题:如图2,“准筝形”ABCD,AD=BD,∠BAD=∠BCD=60°,BC=5,CD=3,求AC的长.

      小军研究后发现,可以CD为边向外作等边三角形,构造手拉手全等模型,用转化的思想来求AC.请你按照小军的思路求AC的长.

    3. (3) 如图3,在△ABC中,∠A=45°,∠ABC=120°,BC=2 ,设D是△ABC所在平面内一点,当四边形ABCD是“准筝形”时,请直接写出四边形ABCD的面积.

微信扫码预览、分享更方便

试卷信息