当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省金华市浦江县2020-2021学年八年级下学期数学期末...

更新时间:2021-09-23 浏览次数:374 类型:期末考试
一、选择题(本题有10小题,每题2分,共20分)
二、填空题(本题有6小题,每小题3分,共18分)
三、解答题(本题有8小题,共62分)
    1. (1) ×
    2. (2) (3﹣ )( +1).
  • 18. (2021八下·浦江期末) 解下列方程:
    1. (1) x2﹣4x﹣5=0;
    2. (2) x2﹣7x+1=0(用公式法解).
  • 19. (2021八下·浦江期末) 某校组织“党史知识”学习比赛活动,每班参加比赛的人数相同,成绩分为ABCD四个等级,其中相应等级的得分依次记为100分,90分,80分,70分.学校将八年级一班和二班的学习比赛活动的成绩整理并绘制成如下的统计图.根据以上信息,解答下列问题:
    1. (1) 二班比赛成绩D级人数是 人.
    2. (2) 将下面表格补充完整:

      班级 成绩

      平均数

      中位数

      众数

      一班

      88.75

      100

      二班

      90

      100

  • 20. (2021八下·浦江期末) 已知抛物线:yx2﹣2x﹣3,抛物线图象与x轴交于AB两点(点B在点A的右边).
    1. (1) 求AB两点间的距离及抛物线的顶点坐标.
    2. (2) 若将该抛物线沿垂直方向向上平移1个单位,再沿水平方向向右平移若干个单位后,新的抛物线刚好经过点B . 求平移后新的抛物线表达式.
  • 21. (2021八下·浦江期末) 如图,将矩形纸ABCD的四个角向内折起,恰好拼成一个无缝隙、无重叠的四边形EFGH

    1. (1) 求证:四边形EFGH是矩形;
    2. (2) 若EH=6cmEF=8cm , 求边AD的长.
  • 22. (2023九上·滨江开学考) 篮球运动员投篮后,球运动的路线为抛物线的一部分(如图),抛物线的对称轴为直线x=2.5.

    1. (1) 求篮球运动路线的抛物线表达式和篮球在运动中离地面的最大高度.
    2. (2) 若篮筐离地面3.05m , 离运动员投篮处水平距离为4.2m , 问:篮球以该运动方式,能否投进篮筐?若能投进篮筐,请说明理由;若不能,则运动员应向前还是往后移动多少米后再投篮,刚好能使篮球投进篮筐?
  • 23. (2023八下·巴州月考) 如图所示,▱ABCD的边ABx轴上,点Dy轴上,已知OA=3,AD=6,BDAD , 从C点出发的点E , 以每秒1个单位的速度向点D移动.MBD的中点,EM的延长线交AB于点F

    1. (1) 求点BC的坐标;
    2. (2) 当四边形EFBC是平行四边形时,求点E的移动时间t(秒).
    3. (3) 当△DEM为等腰三角形时,求CE的长.
  • 24. (2021八下·浦江期末) 已知点A在反比例函数yk>0,x>0)的图像上,Rt△OAC在平面直角坐标系中的位置如图所示,直角边ACx轴,交x轴于点,把Rt△OACAC中点M逆时针旋转180°,得到△BCA , 四边形OABC的面积为4 ,边BC与反比例函数yk>0,x>0)图象交于点E

    1. (1) 求该反比例函数的表达式.
    2. (2) 当∠AOC=60°时,求点E的坐标.
    3. (3) 若直线ymx+2与yk>0,x>0)有2个交点.求m的取值范围。
四、选择题:(本题有两小题,每小题2分,共4分)
五、填空题:(本题有两小题,每小题3分,共6分)
六、解答题:(本题有两小题,每小题5分,共10分)
  • 29. (2021八下·浦江期末) 某超市销售一种国产品牌台灯,平均每天可售出100盏,每盏台灯的利润为12元.为了扩大销售,增加利润,超市准备适当降价,据调查,每盏台灯每降价1元,平均每天会多售出20盏.若要实现每天销售获利1400元,则每盏台灯降价多少元?
  • 30. (2021八下·浦江期末) 如图,矩形ABCD的边AB=6,AD=9,点EF分别是边ABAD上的动点.把△AEF沿直线EF折叠,在同一平面上得到△GEF , 点G为点A的对应点.

    1. (1) 当点F与点D重合时,求BG的最小值;
    2. (2) 当点G落在边BC上的 处时,求BE长.

微信扫码预览、分享更方便

试卷信息