当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

河南省汝阳县2021年数学中考二模试卷

更新时间:2024-07-13 浏览次数:106 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 17. (2021·汝阳模拟) 2021年央视春晚,数十个节目给千家万户送上了丰富的“年夜大餐”.中原人民再次以丰富的节目参与到这场全国人民的关注的除夕盛宴中.某校随机对九年级部分学生进行了一次调查,对最喜欢相声《年三十的歌》(记为 )、歌曲《牛起来》(记为 )、武术表演《天地英雄》(记为 )、小品《开往春天的幸福》(记为 )的同学进行了统计(每位同学只选择一个最喜欢的节目),绘制了以下不完整的统计图,请根据图中信息解答问题:

    1. (1) 本次接受调查的学生共有名;
    2. (2) 扇形统计图中, 所在扇形的圆心角度数是
    3. (3) 将条形统计图补充完整;
    4. (4) 若九年级共有720名学生,估计其中最喜欢相声《年三十的歌》的学生大约有多少人?
  • 18. (2021·汝阳模拟) 千玺广场举办的灯光秀是郑州一景,夜幕下的“大玉米”流灯溢彩,绚丽纷呈.象征着古老河南、厚重河南的“大玉米”,穿上了“晚礼服”,展示着开放河南、出彩河南的崭新形象.如图所示,在 处测得“中原更出彩”顶端 点的仰角为45°,点 到玉米楼顶端 点的距离约为 ,再沿 方向前进 到达 处,测得玉米楼顶端 点的仰角为 .求玉米楼 的总高度.(结果精确到 .参考数据:

  • 19. (2021·汝阳模拟) 春暖花开的季节最适合外出摘草莓,不仅能尝到新鲜的草莓,还可以体会田园乐趣,现有甲、乙两家草莓采摘园均推出了优惠活动方案,两家草莓品质相同,且其门票及草莓的销售价格也相同.

    甲采摘园的优惠方案是:游客进园需购买门票,采摘的草莓按售价的五折销售.

    乙采摘园的优惠方案是:游客进园不需要购买门票,采摘的草莓按售价的七折销售;

    优惠期间,设某一位游客的草莓采摘量为 千克,在甲采摘园所需总费用为 元,且 ,在乙采摘园所需总费用为 元,且 .其函数图象如图所示.

    1. (1) 求 的值,并说出它们的实际意义;
    2. (2) 求打折前的每千克草莓的售价和 的值;
    3. (3) 若预计采摘草莓4千克,那么选择哪家采摘园更省钱?说明理由.
  • 20. (2021·汝阳模拟) 我们知道,直线与圆有三种位置关系:相交、相切、相离.当直线与圆有两个公共点(即直线与圆相交)时,这条直线就叫做圆的割线.割线也有一些相关的定理.比如,割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等.下面给出了不完整的定理“证明一”,请补充完整.

    已知:如图①,过 外一点 的两条割线,一条交 点,另一条交 点.

    求证: .

    证明一:连接

    所对的圆周角,∴_▲_.

    又∵ ,∴_▲_,∴_▲_.

    .

    研究后发现,如图②,如果连接 ,即可得到学习过的圆内接四边形 .那么或许割线定理也可以用圆内接四边形的性质来证明.请根据提示,独立完成证明二.

    证明二:连接

  • 21. (2021·汝阳模拟) 在平面直角坐标系中,抛物线 经过点 .
    1. (1) 求 的值及 满足的关系式;
    2. (2) 若抛物线在 两点间从左到右下降,求 的取值范围;
    3. (3) 结合函数图象判断,抛物线能否同时经过点 ?若能,写出一个符合要求的抛物线的表达式和 的值,若不能,请说明理由.
  • 22. (2021·汝阳模拟) 郑小舟在学习中遇到这样一个问题:“如图①,菱形 的边长是4, ,点 为对角线 上一动点,过点 ,交边 于点 ,把 沿 折叠得到 ,若 恰为等腰三角形,求 的长.”他尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:

    1. (1) 根据点 上的不同位置,画出相应的图形,测量线段 的长度,得到下表几组对应值.

      0

      0.5

      1.0

      1.5

      2.0

      2.5

      3.0

      4.0

      3.18

      2.48

      2.06

      2.07

      2.53

      3.23

      操作中发现:“线段 的长度无需测量即可得到”.因为 满足关系式:.

    2. (2) 将线段 的长度作为自变量 的长度是 的函数,记作 ,在图②所示的平面直角坐标系中画出函数 的图象.
    3. (3) 设 ,继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当 为等腰三角形时,线段 长度的近似值(结果保留一位小数, ).
  • 23. (2021·汝阳模拟) 如图1,在 中, ,点 分别在边 上, ,连接 .将 绕点 顺时针方向旋转,记旋转角为 .

    1. (1) (问题发现)

      ①当 时, ;②当 时,

    2. (2) (拓展研究)

      试判断:当 时, 的大小有无变化?请仅就图2的情形给出证明;

    3. (3) (问题解决)

      在旋转过程中,求出 的最大值.

微信扫码预览、分享更方便

试卷信息