当前位置: 高中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

吉林省长春市重点高中2021-2022学年高三上学期理数第一...

更新时间:2024-07-13 浏览次数:80 类型:月考试卷
一、单选题
二、填空题
  • 13. (2021高三上·长春月考) 若变量x,y满足约束条件 ,则目标函数z=3x+y的最大值为
  • 14. (2021高三上·长春月考) 的展开式中,若含 项的系数为-40,则正实数
  • 15. (2021高三上·长春月考) 中国古代数学家刘徽在《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的立体为“牟合方盖”,如图(1)(2).刘徽未能求得牟合方盖的体积,直言“欲陋形措意,惧失正理”,不得不说“敢不阙疑,以俟能言者”.约200年后,祖冲之的儿子祖暅提出“幂势既同,则积不容异”,后世称为祖暅原理,即:两等高立体,若在每一等高处的截面积都相等,则两立体体积相等,如图(3)(4).

    已知八分之一的正方体去掉八分之一的牟合方盖后的剩余几何体与长宽高皆为八分之一正方体棱长的倒四棱锥“等幂等积”,祖暅由此推算出牟合方盖的体积.据此可知,若正方体的棱长为1,则其牟合方盖的体积为.

  • 16. (2021高三上·长春月考) 如图,某湿地为拓展旅游业务,现准备在湿地内建造一个观景台 ,已知射线 为湿地两边夹角为 的公路(长度均超过 千米),在两条公路 上分别设立游客接送点 ,且 千米,若要求观景台 与两接送点所成角 互补且观景台 的右侧,并在观景台 与接送点 之间建造两条观光线路 ,则观光线路之和最长是 (千米).

三、解答题
  • 17. (2021高三上·长春月考) 设正项数列{an}为等比数列,它的前n项和为Sn , a1=1,且a1+S2=a3.
    1. (1) 求数列{an}的通项公式;
    2. (2) 已知 是首项为1,公差为2的等差数列,求数列{bn}的前n项和Tn.
  • 18. (2021高三上·长春月考) 已知斜率为1的直线 过点 ,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,曲线 的极坐标方程为 ,直线 和曲线 的交点为A, .
    1. (1) 求曲线 的直角坐标方程:
    2. (2) 求 的值.
  • 19. (2023高三上·农安模拟) 移动支付在中国大规模推广五年之后,成功在10亿移动互联网用户中获得了九成的渗透率,这大约是中国自宽带和手机之后,普及率最高的一项产品,甚至,移动支付被视为新时代中国的四大发明之一.近日,lpsosChina针对第三方移动支付市场在一家大型超市进行了顾客使用移动支付情况的调查.调查人员从年龄在20岁到60岁的顾客中随机抽取了200人,得到如下数据:

    年龄段人数类型

    使用移动支付

    45

    40

    25

    15

    不使用移动支付

    0

    10

    20

    45

    1. (1) 现从这200人中随机依次抽取2人,已知第1次抽到的人使用移动支付的条件下,求第2次抽到的人不使用移动支付的概率;
    2. (2) 在随机抽取的200人中对使用移动支付的人群采用分层抽样的方式抽取25人做进一步的问卷调查再从这25人中随机选出3人颁发参与奖,设这3人中年龄在 之间的人数为 ,求 的分布列及数学期望.
  • 20. (2023高三上·汕头期中) 如图,在四棱锥 中,侧棱 底面 ,底面 为长方形,且 的中点,作 于点

    1. (1) 证明: 平面
    2. (2) 若三棱锥 的体积为 ,求二面角 的余弦值.
  • 21. (2022·疏附模拟) 已知椭圆 的左、右焦点分别为 ,且 ,点 在椭圆 上.
    1. (1) 求椭圆 的标准方程.
    2. (2) 为椭圆 上一点,射线 分别交椭圆 于点 ,试问 是否为定值?若是,求出该定值;若不是,请说明理由.
  • 22. (2021高三上·长春月考) 已知函数f(x)=﹣αx2+(α﹣2)x+lnx.
    1. (1) 当α=1时,求函数f(x)的单调区间;
    2. (2) 若 在当x∈(0,+∞)时恒成立,求实数α的取值范围.

微信扫码预览、分享更方便

试卷信息