当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

贵州省遵义市2020-2021学年八年级上学期数学期末考试试...

更新时间:2021-12-31 浏览次数:210 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 18. (2021八上·遵义期末) 因式分解:
    1. (1) 2a2b﹣ab2
    2. (2) (a+b)2+12(a+b)+36.
  • 19. (2021八上·遵义期末) 化简运用:小丽在求解一个有解的分式方程 =▓时,将等号右边的值写错,又找不到原题目了,但肯定的是“▓”为三个“有理数的特殊数”﹣1,0,1中的一个,请你帮她确认这个数.并求出原分式方程的解(提示:先化简分式再求解方程可不写出确认“▓”的过程,但要写出解方程的过程).
  • 20. (2021八上·遵义期末) 小华在中学学习了几何证明之后总结发现要证明角(或边)相等的几何定理至少有9条,比如:①对顶角相等,②两直线平行,同位角相等,③全等三角形的对应角相等,那么,如图所示,已知点B、C、D、F在一条直线上,BF=CD,AB∥DE且AB=DE.请你证明:∠A=∠E.

  • 21. (2021八上·遵义期末) 在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点B,C的坐标分别为(﹣2,1),(﹣1,3).

    ⑴请你在如图所示的网格平面内作出平面直角坐标系并标出原点;

    ⑵写出点A的坐标,并作出△ABC关于y轴对称的△A′B′C′,然后写出A′,B′,C′的坐标;

    ⑶小芳在(2)中的操作时来了灵感,并发现了其中的规律:若将(2)中作轴对称图记作第1次操作(变换),那么从△ABC开始顺次沿y轴、x轴进行循环往复的轴对称变换,则原来的点A经过第2021次变换后所得的坐标是  ▲  (请直接写出坐标).

  • 22. (2021八上·遵义期末) 小明遇到这样一个问题

    如图1,△ABC中,∠ACB=90°,点D在AB上,且BD=BC,求证:∠ABC=2∠ACD.

    小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:

    方法2:如图2,作BE⊥CD,垂足为点E.

    方法3:如图3,作CF⊥AB,垂足为点F.

    根据阅读材料,从三种方法中任选一种方法,证明∠ABC=2∠ACD.

  • 23. (2021八上·遵义期末) 七千年前中国长江流域的先民们就曾种植水稻,到目前国内杂交稻的种植面积有2亿亩.2019年10月21日至22日,被袁隆平看作突破亩产“天花板”关键的第三代杂交水稻,在湖南省衡阳市衡南县清竹村以首次公开测产方式全面亮相,其潜能巨大.如图,“第三代一号”水稻的实验田是边长为m米的正方形去掉一个边长为n米(m>n)正方形蓄水池后余下的部分,“第三代二号”水稻的试验田是边长为(m﹣n)米的正方形,两块试验田的水稻都收获了a千克.

    1. (1) 试建立代数式,并比较哪种水稻的单位面积产量高?为什么?(提示:m,n均为正数)
    2. (2) 高的单位面积产量比低的单位面积产量高多少?
  • 24. (2021八上·遵义期末) 数学是一门充满乐趣、奥妙、又极具探索的学科,对一个人的思维也是一种“挑战”.几何图形更是变幻无穷,但只要我们借助图形的直观、特殊情形出发,逐步“从特殊到一般”进行探索,思路和方法自然就会显现出来.下面是一道探索几何图形中线段AE与DB数量关系的例子:已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.小强的思路是:

    1. (1) (特例探索)如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AEDB(选填“>”、“<”或“=”).
    2. (2) (特例引路)如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论并加以理由说明,格式如:答:AE  ▲  DB(选填“>”、“<”或“=”);理由如下,过点E作EF∥BC交AC于点F.(请你将接下来的解答过程补充完整).
    3. (3) (拓展延伸)在等边三角形ABC中,当点E在直线AB上(在线段AB外),点D在线段CB的延长线上时,同样ED=EC,若已知△ABC的边长为1,AE=2,则请你帮助小强求出CD的长.(请你画出相应图形,并简要写出求CD长的过程).

微信扫码预览、分享更方便

试卷信息