当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山东省济宁市微山县2021-2022学年九年级上学期数学期中...

更新时间:2024-07-13 浏览次数:103 类型:期中考试
一、单选题
二、填空题
三、解答题
    1. (1) 解方程:x2﹣2x﹣99=0;
    2. (2) 解方程:3x(2x﹣1)=4x﹣2.
  • 17. (2021九上·微山期中) 关于x的一元二次方程
    1. (1) 求证:方程总有两个实数根;
    2. (2) 若方程的两个实数根都是正整数,求m的最小值.
  • 18. (2021九上·微山期中) 如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,3),B(4,4),C(2,1).

    1. (1) 画出将△ABC向左平移4个单位后得到的△A1B1C1 , 并写出点A1的坐标;
    2. (2) 画出把△ABC绕原点O旋转180°后得到的△A2B2C2 , 并写出点A2的坐标;
    3. (3) 观察图形可知,△A1B1C1与△A2B2C2关于点(  )中心对称.
  • 19. (2021九上·微山期中) 如图,有一张边AB靠墙的长方形桌子ABCD,长120cm,宽60 cm.有一块长方形台布EFMN的面积是桌面面积的2倍,并且如图所示铺在桌面上时,三边垂下的长度中有两边相等(AE=BF),另外一边是AE的 倍(即CD与MN之间的距离).求这块台布的长和宽.

  • 20. (2021九上·微山期中) 某商场一种商品标价为40元,试销中发现:①一件该商品打九折销售仍可获利20%;②每天的销售量y(件)与每件的销售价x(元)满足一次函数y=162﹣3x.
    1. (1) 求该商品的进价为多少元?
    2. (2) 在不打折的情况下,如果商场要想获得最大利润,每件商品的销售价定为多少元?最大销售利润为多少?
  • 21. (2021九上·微山期中) (阅读材料)

    若a,b都是非负实数,则a+b≥2 ,当且仅当ab时,“=”成立.

    证明:∵( 2≥0

    ∴a﹣2 +b≥0.

    ∴a+b≥2 ,当且仅当a=b时,“=”成立.

    (举例应用)

    已知x>0,求函数y=2x+ 的最小值.

    解:y=2x+ ≥2 =4.当且仅当2x= ,即x=1时,“=”成立.

    当x>0时,函数y=2x+ 的最小值是4.

    (问题解决)

    1. (1) 模具厂计划生产面积为4,周长为m的矩形模具,尝试求出周长m最小值.

      ①建立函数模型

      设矩形相邻两边的长分别为x,y,由矩形的面积为4,则y与x的函数关系式为,周长m与x的函数关系式为

      ②启发应用解决

      请利用上面材料,在①的条件下可以得出周长m的最小值为

    2. (2) 已知函数y1=x+3(x>﹣3)与函数y2=(x+3)2+9(x>﹣3),当x取何值时, 有最小值?最小值是多少?
  • 22. (2021九上·微山期中) 如图,直线y=﹣ x﹣2与x轴y轴分别交于A,C抛物线y=ax2+bx+c(a≠0)经过点A,B,C,点B坐标为(1,0).

    1. (1) 求抛物线的解析式;
    2. (2) 抛物线的对称轴与x轴交于点D,连接CD,点P是直线AC下方抛物线上的一动点(不与A,C重合),当点P运动到何处时,四边形PCDA的面积最大?求出此时四边形PCDA面积的最大值和点P坐标;
    3. (3) 在抛物线的对称轴上是否存在一点Q,使△QCD是以CD为腰的等腰三角形?若存在,直接写出点Q的坐标:若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息