已知:在△ABC中,AB=BC,BD平分∠ABC交AC于点D.
求作:∠BPC,使∠BPC=∠BAC.
作法:① 分别以点B和点C为圆心,大于的长为半径作弧,两弧交于点E和点F,
连接EF交BD于点O;
② 以点O为圆心,OB的长为半径作⊙O;
③ 在劣弧AB上任取一点P(不与点A、B重合),连接BP和CP.所以∠BPC=∠BAC.
根据小玟设计的尺规作图过程.
证明:连接OA、OC.
∵AB=BC,BD平分∠ABC,
∴BD⊥AC且AD=CD.
∴OA=OC.
∵EF是线段BC的垂直平分线,
∴OB= ▲ .
∴OB=OA.
∴⊙O为△ABC的外接圆.
∵点P在⊙O上,
∴∠BPC=∠BAC( ▲ )(填推理的依据).
①当AB为⊙P的直径时,线段AB的可视角∠AMB为度;
②当⊙P的半径为4时,线段AB的可视角∠AMB为度;