当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江西省赣州市章贡区2021-2022学年八年级上学期期末数学...

更新时间:2024-07-13 浏览次数:71 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 13. (2021八上·章贡期末)        
    1. (1) 解方程: 
    2. (2) 已知等腰三角形的两边长为5cm和4cm,求它的周长.
  • 15. (2021八上·章贡期末) 已知 都为正三角形,点B,C,D在同一直线上,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.

    1. (1) 如图1,当 时,作 的中线
    2. (2) 如图2,当 时,作 的中线 .
  • 16. (2021八上·章贡期末) 如图,点A、B、C、D在一条直线上,EA//FB,EC//FD,EA=FB.求证:AB=CD.

  • 17. (2021八上·章贡期末) 化简分式 , 并从1、2、3这三个数中取一个合适的数作为x的值代入求值.
  • 18. (2021八上·章贡期末) 如图所示,已知△ABC为等边三角形,AE=CD,AD、BE相交于点F.

    1. (1) 求证:△ABE≌△CAD;
    2. (2) 若BP⊥AD于点P,PF=6,求BF的长.
  • 19. (2023八上·潮南期末) 接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.
    1. (1) 求该厂当前参加生产的工人有多少人?
    2. (2) 生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?
  • 20. (2021八上·章贡期末) 如图,在四边形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.

    1. (1) 如图1,若α=90°,根据教材中一个重要性质直接可得DA=CD,这个性质是
    2. (2) 如图2,求证AD=CD.
  • 21. (2021八上·章贡期末) 图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.

    1. (1) 观察图2,请你写出下列三个代数式(a+b)2 , (a﹣b)2 , ab之间的等量关系为
    2. (2) 运用你所得到的公式,计算:若m、n为实数,且mn=﹣3,m﹣n=4,试求m+n的值.
    3. (3) 如图3,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=8,两正方形的面积和S1+S2=26,求图中阴影部分面积.
  • 22. (2021八上·章贡期末) 【阅读材料】小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则ABD≌ACE.

    1. (1) 【材料理解】在图1中证明小明的发现.
    2. (2) 【深入探究】如图2,ABC和AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°,其中正确的有.(将所有正确的序号填在横线上)
    3. (3) 【延伸应用】如图3,在四边形ABCD中,BD=CD,AB=BE,∠ABE=∠BDC=60°,试探究∠A与∠BED的数量关系,并证明.
  • 23. (2021八上·章贡期末) 如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A—B—C—D—A返回到点A停止,点P的运动时间为t秒.

    1. (1) 当t=3秒时,BP=cm;
    2. (2) 当t为何值时,连结CP,DP,△CDP为等腰三角形;
    3. (3) Q为AD边上的点,且DQ=5,当t为何值时,以长方形的两个顶点及点P为顶点的三角形与△DCQ全等.

微信扫码预览、分享更方便

试卷信息