当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省舟山市金衢山五校2021-2022学年九年级下学期3月...

更新时间:2022-05-29 浏览次数:79 类型:月考试卷
一、选择题(本题有10小题,每小题3分,共30分.)
二、填空题(本题有6小题,每小题4分,共24分)
三、解答题(本题共8小题,其中第17-19题每题6分,第20-21题每题8分,第22-23题每题10分,第24题12分,共66分)
  • 18. (2022九下·舟山月考) 小王解答“解分式方程:”的过程如图,请指出他解答过程中错误步骤的序号,并写出正确的解答过程.

  • 19. (2022九下·舟山月考) 如图,在5x6的方格纸中,∆ABC的顶点均在格点上,请用无刻度的直尺按要求画图.

       

    图1                图2             图3

    1. (1) 在图1中画一个以A,B,C,D为顶点的平行四边形(非矩形);
    2. (2) 在图2中过点C作CE⊥AB,使点E在格点上;
    3. (3) 在图3中作∠FBA=∠CBA,使点F在格点上,且不在直线BC上.
  • 20. (2022九下·舟山月考) 劳动教育是学校贯彻“五育并举”的重要举措,某校倡议学生在家帮助父母做一些力所能及的家务.小华随机抽取该校部分学生进行问卷调查,问卷调查表如图所示,并根据调查结果绘制了两幅不完整的统计图.

    平均每周做家务的时间调查表

    设平均每周做家务的时间为x小时,则最符合你的选项是(    )(单选)

    (A)0≤x<1      (B)1≤x<2    (C)2≤x<3   (D)x≥3

    学校部分学生平均每周做家务的

    请根据上述图标,解答下列问题:

    1. (1) 小华共调查了多少人?其中平均每周做家务的时间少于1小时的同学有多少人?
    2. (2) 该校有1800名学生,根据抽样调查结果,请你估计该校平均每周做家务的时间不少于2小时的学生人数.
    3. (3) 根据本次调查发表一条你的看法.
  • 21. (2022九下·舟山月考) 如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.

    1. (1) 求证:BF=DH;
    2. (2) 若E为AD中点,FH=4,求菱形ABCD的周长.
  • 22. (2022九下·舟山月考) 如图1是一台刷脸支付仪,由底柱、水平托板、支撑板和电子器材构成,图2是其上半部分的侧面示意图.电子器材长AC=16cm,支撑板长BD=16cm,水平托板DE离地面的高度为120cm,∠CBD=75°,∠BDE=60°,已知摄像头在点A处,支撑点B是AC的中点,电子器材AC可绕点B转动,支撑板BD可绕点D转动.

    1. (1) 如图2,求摄像头(点A)离地面的高度h(精确到0.1cm).
    2. (2) 如图3,为方便使用,把AC绕点B逆时针旋转15°后,再将BD绕点D顺时针旋转a,使点C落在水平托板DE上,求a(精确到0.1°).(参考数据:tan26.6°≈0.5; ≈1.41; ≈1.73)
       
  • 23. (2022九下·舟山月考) 已知⊙O是边长为3的正∆ABC的外接圆,点P为弧AC上一点.

    1. (1) 如图1,当BP恰为⊙O的直径时,求BP的长;
    2. (2) 如图2,点M在线段BP上,点N在线段CP上,且BM=CN,连接CM,MN,若∠CMN=30°,求CM2+MN2的值;
    3. (3) 如图3,延长CP交BA延长线于点E,连接AP并延长交BC延长线于点F.请判断PE·PF是否有最大值?若有,请求出最大值;若没有,请说明理由.
  • 24. (2022九下·舟山月考) 某水产养殖户利用温棚养殖技术养殖南美白虾,与传统养殖相比,可缩短养殖周期,即从原来的每年养殖两季提高至每年三季,已知每千克白虾的养殖成本为8元,在某上市周期的70天里,销售单价p(元/千克)与时间第t(天)之间的函数关系如下:

    日销售量y(千克)与时间第t(天)之间的函数关系如右图所示:

    1. (1) 求日销售量y与时间t的函数关系式;
    2. (2) 求第几天的日销售利润最大?最大利润是多少元?
    3. (3) 在实际销售的前40天(1≤t≤40,t为整数)中,该养殖户决定每销售1千克白虾,就捐赠m(m<8)元给公益事业.在这前40天中,已知每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.

微信扫码预览、分享更方便

试卷信息