运动员 | 甲 | 乙 | 丙 | 丁 |
平均数( ) | 376 | 350 | 376 | 350 |
方差 | 12.5 | 13.5 | 2.4 | 5.4 |
组别 | 平均分 | 中位数 | 方差 | 合格率 | 优秀率 |
甲组 | 6.7 | 3.41 | 90% | 20% | |
乙组 | 7.5 | 1.69 | 80% | 10% |
三角形中位线定理的证明
如图1,△ABC中,点D,E分别是AB,AC的中点,连接DE,像DE这样,连接三角形两边的中点的线段叫做三角形的中位线.求证:DE∥BC,且DE=BC.
证明:如图2,延长DE到点F,使EF=DE,连接FC,DC,AF.
∵AE=EC,DE=EF,
∴四边形ADCF是平行四边形(依据1).
∴CF//DA,CF=DA.
∵DA=BD,
∴CF//BDA,CF=BD.
∴四边形DBCF是平行四边形(依据2).
∴CF//BC,CF=BC.
∵DE=DF,
∴DE∥BC,且DE=BC.
归纳总结:
上述证明过程中运用了“倍长线段法”,也有人称材料中的方法为“倍长法”(延长了三角形中位线的一倍),该方法是解决初中数学几何题的一种常用方法.
上述材料证明过程中的“依据1”是指:;
“依据2”是指:;
数学学习小组发现还可以用“倍长线段法”证明定理:直角三角形斜边上的中线等于斜边的一半.
已知:如图3,在Rt△ACB中,∠ACB=90°,E为AB边的中点,求证:CE=AB.
证明:延长CE到点F,使EF=CE,连接BF,AF,如图4.
任务(2)请将证明过程补充完整.
型号 | A | B |
价格 | 800元/台 | 600元/台 |
背景阅读:宽与长的比是(约为0.618)的矩形叫黄金矩形.黄金矩形给我们以协调、匀称的美感.世界各国许多著名的建筑,为取得最佳的视觉效果,都采用的黄金矩形的设计,如希腊的帕特农神庙等.
实践操作:下面我们折叠出一个黄金矩形(如图所示):
第一步:在一张矩形纸片的一端,利用图1的方法折出一个正方形,然后把纸展平.
第二步:如图2,把这个正方形折成两个相等的矩形,再把纸片展平.
第三步:折出内侧矩形的对角线AB,并把AB折到图3中所示的AD处.
第四步:展平纸片,按照所得的点D折出DE,矩形BCDE(图4)就是黄金矩形.
问题解决: