①试验条件不会影响某事件出现的频率;
②在相同的条件下试验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;
③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;
④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.
建立模型:为解决上面的“问题”,我们先建立并研究下面从口袋中摸球的数学模型:
①我们首先考虑最简单的情况:既要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?
假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需要再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需要摸出小数的个数是:1+3=4;
②若要确保从口袋中摸出的小球至少有3个是同色的呢?
我们只需要在①的基础上,再从袋中摸出3个小球,就可以确保至少有3个小球同色,即最少需摸出小球的个数是:1+3×2=7
③若要确保从口袋中摸出的小球至少有4个小球同色,即最少需要摸出小球的个数是:1+3×3=10
④若要确保从口袋中摸出的小球至少有a个是同色的呢?即最少需要摸出小球的个数是.
①若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是;
②若要确保摸出的小球至少有12个同色,则最少需摸出小球的个数是;
③若要确保摸出的小球至少有a个同色(a<50),则最少需摸出小球的个数是;
①若要确保摸出的小球至少有3个同色,则最少需摸出小球的个数是
②若要确保摸出的小球至少有a个同色(a<50),则最少需摸出小球的个数是.
中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”,某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题做法全校学生中进行了抽样调查,根据调查结果绘制城如图所示的两个不完整的统计图,请结合图中信息解决下列问题: