当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山东省威海市2022届高三下学期数学三模试卷

更新时间:2022-07-30 浏览次数:105 类型:高考模拟
一、单选题
二、多选题
三、填空题
四、解答题
  • 17. (2022·威海模拟) 已知等比数列的各项均为正值,的等差中项, , 记
    1. (1) 求数列的通项公式;
    2. (2) 设数列的前项和为 , 证明:
  • 18. (2022·威海模拟) 如图所示,在等边中,分别是上的点,且的中点,于点 . 以为折痕把折起,使点到达点的位置 , 连接

    1. (1) 证明:
    2. (2) 设点在平面内的射影为点 , 若二面角的大小为 , 求直线与平面所成角的正弦值.
  • 19. (2022·威海模拟) 如图所示,在平面四边形中, , 设

    1. (1) 若 , 求的长;
    2. (2) 当为何值时,的面积取得最大值,并求出该最大值.
  • 20. (2022·威海模拟) 某生物实验室用小白鼠进行新冠病毒实验,已知6只小白鼠中有1只感染新冠病毒且无患病症状,将它们分别单独封闭隔离到6个不同的操作间内,由于工作人员的疏忽,没有记录感染新冠病毒的小白鼠所在的操作间,需要通过化验血液来确定.血液化验结果呈阳性即为感染新冠病毒,呈阴性即没有感染新冠病毒.下面是两种化验方案:方案甲:逐个化验,直到能确定感染新冠病毒的小白鼠为止.

    方案乙:先任取4只,将它们的血液混在一起化验.若结果呈阳性,则表明感染新冠病毒的小白鼠为这4只中的1只,然后再逐个化验,直到能确定感染新冠病毒的小白鼠为止;若结果呈阴性,则在另外2只中任取1只化验.

    1. (1) 求采用方案甲所需化验的次数为4次的概率;
    2. (2) 用X表示采用方案乙所需化验的次数,求X的分布列:
    3. (3) 求采用方案乙所需化验的次数少于采用方案甲所需化验的次数的概率.
  • 21. (2022·威海模拟) 已知椭圆的离心率为 , 圆与椭圆C有且仅有两个交点且都在y轴上.
    1. (1) 求椭圆C的标准方程;
    2. (2) 已知直线l过椭圆C的左顶点A,且l交圆于M、N两点,P为椭圆C上一点,若以为直径的圆过点A,求面积的最大值.
  • 22. (2022·威海模拟) 已知函数
    1. (1) 当时,求的单调区间;
    2. (2) 若有两个极值点 , 且 , 从下面两个结论中选一个证明.

微信扫码预览、分享更方便

试卷信息