当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

四川省达州市2021-2022学年九年级上学期期中数学试题

更新时间:2024-07-13 浏览次数:51 类型:期中考试
一、单选题
二、填空题
三、解答题
  • 18. (2021九上·达州期中) 先化简,再求值: , 其中是满足不等式组的整数解之一.
  • 19. (2021九上·达州期中) 如图,在中, , 按以下步骤作图:

    ①以点为圆心,任意长为半径作弧,分别交边于点

    ②分别以点为圆心,大于的相同长度为半径作弧,两弧交于点

    ③作射线于点.

    1. (1) 根据上述步骤补全作图过程(要求:尺规作图,不写作法,保留作图痕迹);
    2. (2) 过点交射线于点.补全图形,并求的长.
  • 20. (2021九上·达州期中) 达州市红色旅游景点众多,例如罗江镇张爱萍故居,宣汉县红军公园、王维舟纪念馆,万源战史陈列馆等等,为了解初三学生对达州历史文化的了解程度,随机抽取了男、女各名学生进行问卷测试,问卷共30道选择题,现将得分情况统计,并绘制了如图不完整的统计图(数据分组为组:组:组:组:表示问卷测试的分数),其中男生得分处于组的有14人,男生组得分情况分别为:22,22,22,22,22,23,23,23,24,24,24,25,25,25.

    男生、女生得分的平均数、中位数、众数(单位:分)如表所示:

    组别

    平均数

    中位数

    众数

    20

    22

    20

    23

    20

    1. (1) 求的值,并补全条形统计图;
    2. (2) 已知初三年级总人数为1800人,请估计参加问卷测试,成绩处于组的人数;
    3. (3) 据了解男生中有两名同学得满分,女生中分数最高的两名同学分别是30分和29分.现从这四名同学中随机抽取两名参加全校总决赛,用树状图或列表的方法求恰好抽到两名男生的概率是多少?
  • 21. (2021九上·达州期中) 我们知道当人们的视线与物体的表面互相垂直且视线恰好落在物体中心位置时的视觉效果最佳,如图是小然站在地面欣赏悬挂在墙壁上的油画的示意图,设油画与墙壁的夹角 , 此时小然的眼睛与油画底部处于同一水平线上,视线恰好落在油画的中心位置处,且与垂直.已知油画的长度.

    1. (1) 当小然到墙壁的距离时,求油画顶部点到墙壁的距离;
    2. (2) 在(1)的基础上当油画底部处位置不变,油画与墙壁的夹角逐渐减小时则变短,当变为原来的 , 小然为了保证欣赏油画的视觉效果最佳,他的位置是否发生变化,若不变说明理由;若变化,请你求出变化的方向和距离.
  • 22. (2021九上·达州期中) 如图,一天早上,明明正向着教学楼AB走去,他发现教学楼后面有一5G信号接收塔DC,可过了一会抬头一看:“怎么看不到接收塔了?”心里很是纳闷.经过了解,教学楼、接收塔的高分别是21.6m和31.6m,它们之间的距离为30m,明明的眼睛距地面1.6m.当明明刚发现接收塔的顶部D被教学楼的顶部A挡住时,他与教学楼之间的距离为多少米?

  • 23. (2021九上·达州期中) 达州某商家在国庆节期间举行了特产促销活动,已知灯影牛肉每听12元,万源黑鸡蛋每盒50元,第一次促销期间,共卖出灯影牛肉和万源黑鸡蛋共计2000盒.
    1. (1) 若卖出灯影牛肉和万源黑鸡蛋的总销售额不低于54400元,则至少卖出万源黑鸡蛋多少盒?
    2. (2) 第一次促销结束,为了回馈顾客,在第二次促销期间,灯影牛肉每听降价元,万源黑鸡蛋每盒降价元,灯影牛肉数量在(1)问最多的数量下增加 , 万源黑鸡蛋数量在(1)问最少的数量下增加盒,最终第二次促销总销售额比第一次促销的最低销售额54400元多元,求的值.
  • 24. (2021九上·达州期中) 如果关于的一元二次方程有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.
    1. (1) 请根据上述结论解决问题:方程①;方程②;方程③.这几个方程中,是倍根方程的是(填序号即可);
    2. (2) 一般规律探究:我们知道,若一元二次方程的两根为 , 则有 , 请你根据以上关系探究:若一元二次方程是“倍根方程”,则满足什么数量关系?
    3. (3) 若是倍根方程,求的值.
  • 25. (2021九上·达州期中) 模型探究:

    1. (1) 如图1,在等腰直角三角形中, , 直线经过点 , 过于点 , 过于点.求证:
    2. (2) 已知直线与坐标轴交于点 , 将直线绕点逆时针旋转90°至直线 , 如图2,求直线的函数表达式;
    3. (3) 如图3,已知点在直线上,且.若直线与轴的交点为中点.试判断在轴上是否存在一点 , 使得是以为斜边的等腰直角三角形.

微信扫码预览、分享更方便

试卷信息