第二步:如图2,再一次折叠纸片,使点A落在EF上的N处,并使折痕经过点B,得到折痕BM,同时得到线段BN.连结AN,易知△ABN的形状是 ▲ .
论证:如图3,若延长MN交BC于点P,试判定△BMP的形状,请说明理由.
① ▲ °,构造的四边形是菱形;
②若构造的四边形是矩形,则不同的矩形应该有 ▲ 个.
下面是小明、小华和小东三位同学关于本题不同视角下的部分思维过程:
小明:从直线BD是正方形的对称轴角度看,连接EC,如图2,则 , ∠ECD=∠EAD,又 , ……
小华:从的角度看,可以过点E作BC的平行线,交AB、CD于M、N,如图3,通过证明 , ……
小东:从的角度看,还可以过点E作BD的垂线,交DC的延长线于点P,如图4,……
请结合上面的思路,求BE的长.
如图①,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBE′(点A的对应点为点C).延长AE交CE′于点F,连接DE.
试判断四边形BE'FE的形状,并说明理由;
如图①,若AB=4,当BE的长为时,△ADE为等腰三角形,请直接写出结果.