当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京市燕山地区2021-2022学年八年级下学期期末质量监测...

更新时间:2023-05-15 浏览次数:110 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 18. (2023八下·香洲期末) 如图,在 ABCD中,点E,F分别在BC,AD上,且BE=FD,求证:四边形AECF是平行四边形.

  • 19. (2022九上·海淀开学考) 下面是小芸设计的“作平行四边形ABCD的边AB的中点”的尺规作图过程.

    已知:▱ABCD.

    求作:点P,使点P为边AB的中点.

    作法:

    ①作射线DA;

    ②以点A为圆心,BC长为半径画弧,

    在点A左侧与射线DA交于点E; 

    ③连接CE交AB于点P.

    点P即为所求作的边AB的中点.

    根据小芸设计的尺规作图过程,

    1. (1) 使用直尺和圆规,依作法补全图形(保留作图痕迹);

    2. (2) 完成下面的证明.

      证明:连接AC,EB,

      ∵四边形ABCD是平行四边形,

      ∴AE∥BC.

      ∵AE=      ▲      

      ∴四边形EBCA是平行四边形,(                            )(填推理的依据)

      ∴AP=PB,(                            )(填推理的依据)

      点P即为所求作的边AB的中点.

  • 21. (2022八下·北京市期末) 已知一次函数的图像经过点A(0,-2),B(3,4).
    1. (1) 求出此一次函数的解析式;
    2. (2) 求出该一次函数与x轴交点的坐标.
  • 22. (2022八下·北京市期末) 绿都农场有一块菜地如图所示,现测得AB=12m,BC=13m,CD=4m,AD=3m,∠D=90°,求这块菜地的面积.

  • 23. (2022八下·北京市期末) 如图,矩形ABCD中,点O是对角线AC的中点,过点O作EF⊥AC分别交BC,AD于点E,F,连接AE和CF.

    1. (1) 求证:四边形AECF为菱形;
    2. (2) 若AB=3,BC=5,求AE的长.
  • 24. (2022八下·北京市期末) 某班“数学兴趣小组”根据学习一次函数的经验,对函数y=|x-2|的图像和性质进行了研究.探究过程如下,请补充完整.
    1. (1) 自变量x的取值范围是全体实数.下表是y与x的几组对应值:

      x

      -3

      -2

      -1

      0

      1

      2

      3

      4

      5

      y

      5

      4

      m

      2

      1

      0

      1

      2

      3

      其中,m=

    2. (2) 如下图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,并画出了函数图象的一部分,请画出该函数图象的另一部分;

    3. (3) 观察函数图象发现,该函数图象的最低点坐标是

      当x<2时,y随x的增大而减小;当x≥2时,y随x的增大而

    4. (4) 进一步探究,

      ①不等式|x-2|≥1.5的解集是

      ②若关于x的方程|x-2|=kx (k≠0)只有一个解,则k的取值范围是

  • 25. (2023八下·东城期中) 某中学为了解家长对课后延时服务的满意度,从七,八年级中各随机抽取50名学生家长进行问卷调查,获得了每位学生家长对课后延时服务的评分数据(记为x),并对数据进行整理、描述和分析.下面给出了部分信息:

    a.八年级课后延时服务家长评分数据的频数分布表如下(数据分为5组:0≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):

    分组

    频数

    0≤x<60

    2

    60≤x<70

    5

    70≤x<80

    15

    80≤x<90

    a

    90≤x≤100

    8

    合计

    50

    b.八年级课后延时服务家长评分在80≤x<90这一组的数据按从小到大的顺序排列,前5个数据如下:

    81,81,82,83,83.

    c.七,八年级课后延时服务家长评分的平均数,中位数,众数如下表:

    年级

    平均数

    中位数

    众数

    78

    79

    85

    81

    b

    83

    根据以上信息,回答下列问题:

    1. (1) 表中a=,b=
    2. (2) 你认为年级的课后延时服务开展得较好,理由是.(至少从两个不同的角度说明理由)
    3. (3) 已知该校八年级共有600名学生家长参加了此次调查评分,请你估计其中大约有多少名家长的评分不低于80分.
  • 26. (2022八下·北京市期末) 如图,过正方形ABCD的顶点D作直线l交CB的延长线于点E,交AB边于点F,过点B作BG⊥DE,垂足为点G,连接AG.

    1. (1) 依题意补全图形;
    2. (2) 求证:∠ABG=∠ADF;
    3. (3) 用等式表示线段AG,BG,DG之间的数量关系,并证明.
  • 27. (2022八下·北京市期末) 对于平面直角坐标系xOy中的点M(m,0)和点P,给出如下定义:

    若在y轴上存在点N,使得∠MNP=90°,且NM=NP,则称点P为m直角等腰点.例如,点P(-2,0)为2直角等腰点,理由如下:如图,设M(2,0),以MP为斜边作等腰直角△PMN,可得y轴上的一个点N(0,2),所以点P(-2,0)为2直角等腰点.

    1. (1) 在点A(-1,0),B(0,1),C(1,1)中,是1直角等腰点的是
    2. (2) 若点D是直线y=2x+3上一点,且点D是3直角等腰点,求点D的坐标;
    3. (3) 若一次函数y=kx+b(k≠0)的图像上存在无数个4直角等腰点,请直接写出该一次函数的解析式.

微信扫码预览、分享更方便

试卷信息