当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

湖北省随州市曾都区2023年中考一模数学试题

更新时间:2024-07-13 浏览次数:72 类型:中考模拟
一、选择题(本题共10小题,每小题3分,共30分.)
二、填空题(本题共6小题,每小题3分,共18分.)
三、解答题(本题共8小题,共72分.)
  • 18. (2023·曾都模拟) 关于x的一元二次方程有两个实数根
    1. (1) 求m的取值范围;
    2. (2) 若 , 求m的值..
  • 19. (2023·曾都模拟) 随州文峰塔始建于唐宋年间,前身为“文笔塔”,民间亦称为“文丰塔”.某兴趣小组同学借助无人机航拍测量位于曾都区东城文峰塔广场的文峰塔高度.如图,无人机在距离地面95米的A处,测得该塔底端点B的俯角为27°,然后向塔方向沿水平面飞行50秒到达点C处,此时测得该塔顶端点D的俯角为60°.已知无人机的飞行速度为3米/秒.

    1. (1) 则无人机从A处到C处的水平飞行距离为米;
    2. (2) 求文峰塔的高度.(参考数据: , 结果精确到0.1米)
  • 20. (2023·曾都模拟) 数字正在改变人们的生活.某校开展了一次数字科技知识测试,并从中随机抽取部分学生的测试成绩进行统计,绘制了如图所示的不完整的统计表和统计图(测试结果共分四个等级:A.优秀;B.良好;C.及格;D.不及格).

    测试等级

    A优秀

    B良好

    C及格

    D不及格

    人数

    20

    60

     

    140

    百分比

    5%

     

    45%

    m

    根据以上信息,回答下列问题:

    1. (1) 本次参与调查的学生人数为,m的值为
    2. (2) 扇形统计图中“B良好”对应的圆心角的度数为      ▲       , 并补全条形统计图;
    3. (3) 本次测试前4名学生中,七、八年级各1人,九年级2人,学校准备从这4名学生中,随机抽取两人报名参加全市创意编程大赛,请用画树状图或列表的方法,求恰好抽到两名九年级学生的概率.
  • 21. (2023·曾都模拟) 如图,AC为的直径,B为AC延长线上一点,D为上一点,且 , 连接DO并延长交于点E,连接BE交于点M.

    1. (1) 求证:直线BD是的切线;
    2. (2) 若 , ①求的半径长;②求弦ME的长.
  • 22. (2023·曾都模拟) “五一”前夕,某超市销售一款商品,进价每件75元,售价每件140元,每天销售40件,每销售一件需支付给超市管理费5元.从五月一日开始,该超市对这款商品开展为期一个月的“每天降价1元”的促销活动,即从第一天(5月1日)开始每天的售价均比前一天降低1元.通过市场调查发现,该商品的日销售量y(件)与第x天( , 且x为整数)之间存在一次函数关系,x,y之间的部分数值对应关系如下表:

    第x天

    5

    10

    15

    20

    日销售量y(件)

    50

    60

    70

    80

    1. (1) 直接写出y与x的函数关系式
    2. (2) 设第x天的利润为W元,试求出W与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?
    3. (3) 销售20天后,由于某种原因,该商品的进价从第21天开始每件下降4元,其他条件保持不变,求超市在这一个月中,该商品的日销售利润不低于3430元的共有多少天?
  • 23. (2023·曾都模拟) 【问题提出】如图1,在中, , 点E,F分别为边AC,BC的中点,将绕点C顺时针旋转 , 连接AE,BF,试探究AE,BF之间存在怎样的数量关系和位置关系?

    1. (1) 【特例探究】若 , 将绕点C顺时针旋转至图2的位置,直线BF与AE,AC分别交于点M,N.按以下思路完成填空(第一个空填推理依据,第二个空填数量关系,第三个空填位置关系):

      , E,F分别为AC,BC的中点,

      ∴AEBF, , 又∵

      ∴AEBM.

    2. (2) 【猜想证明】若绕点C顺时针旋转至图3的位置,直线AE与BF,BC分别交于点M,N,猜想AE与BF之间的数量关系与位置关系,并就图3所示的情况加以证明;
    3. (3) 【拓展运用】若 , 将绕点C顺时针旋转 , 直线AE,BF相交于点M,当以点C,E,M,F为顶点的四边形是矩形时,请直接写出BM的长.
  • 24. (2023·曾都模拟) 已知抛物线与x轴交于点 , 点 , 与y轴交于点C.

    1. (1) 求抛物线的解析式;
    2. (2) 如图1,过点C作轴交抛物线于点D,点E是y轴左侧抛物线上一点,若BC恰好平分 , 求直线BE的解析式;
    3. (3) 如图2,点P是抛物线对称轴上的一点,在抛物线上是否存在点M,使是以PM为斜边的等腰直角三角形,若存在,请直接写出所有点M的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息