当前位置: 高中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

黑龙江省龙西北八校联合体2022-2023学年高二下学期期末...

更新时间:2023-09-08 浏览次数:47 类型:期末考试
一、单选题
二、多选题
三、填空题
四、解答题
  • 17. (2023高二下·黑龙江期末) 已知函数 , 其中a为常数.
    1. (1) 当函数的图象在点处的切线的斜率为1时,求a的值;
    2. (2) 在(1)的条件下,求函数上的最小值.
  • 18. (2023高二下·黑龙江期末) 一个袋子里装有除颜色以外完全相同的白球和黑球共10个.若从中不放回地取球,每次取1个球,在第一次取出黑球的条件下,第二次取出白球的概率为.
    1. (1) 求白球和黑球各有多少个;
    2. (2) 若有放回地从袋中随机摸出3个球,求恰好摸到2个黑球的概率;
    3. (3) 若不放回地从袋中随机摸出2个球,用表示摸出的黑球个数,求的分布列和期望.
  • 19. (2023高二下·黑龙江期末) 已知函数 , 其中
    1. (1) 若函数在处取得极值,求实数a的值;
    2. (2) 若函数上恒成立,求实数a的取值范围.
  • 20. (2023高二下·黑龙江期末) 某中学是走读中学,为了让学生更有效率的利用下午放学后的时间,学校在本学期第一次月考后设立了多间自习室,以便让学生在自习室自主学习、完成作业,同时每天派老师轮流值班.在本学期第二次月考后,高一某班数学老师统计了两次考试该班数学成绩优良人数和非优良人数,得到如下列联表:(单位:人)

    是否设立自习室

    成绩

    合计

    非优良

    优良

    未设立自习室

    26

    14

    40

    设立自习室

    10

    30

    40

    合计

    36

    44

    80

    下面的临界值表供参考:

    0.15

    0.10

    0.05

    0.025

    0.010

    0.005

    0.001

    2.072

    2.706

    3.841

    5.024

    6.635

    7.879

    10.828

    (参考公式: , 其中

    1. (1) 依据小概率值的独立性检验,能否认为设立自习室对提高学生成绩有效?
    2. (2) 设从该班第一次月考的所有数学成绩中任取两个,取到成绩优良数为X;从该班第二次月考的所有数学成绩中任取两个,取到成绩优良数为Y,求X与Y的均值并比较大小,请解释所得结论的实际含义.
  • 21. (2023高二下·黑龙江期末) 近年来,由于耕地面积的紧张,化肥的施用量呈增加趋势,一方面,化肥的施用对粮食增产增收起到了关键作用,另一方面,也成为环境污染,空气污染,土壤污染的重要来源之一.如何合理地施用化肥,使其最大程度地促进粮食增产,减少对周围环境的污染成为需要解决的重要问题.研究粮食产量与化肥施用量的关系,成为解决上述问题的前提.某研究团队收集了10组化肥施用量和粮食亩产量的数据并对这些数据作了初步处理,得到了如图所示的散点图及一些统计量的值,化肥施用量为x(单位:公斤),粮食亩产量为y(单位:百公斤).

    参考数据:

             

             

             

             

             

             

             

             

    650

    91.5

    52.5

    1478.6

    30.5

    15

    15

    46.5

    表中.

    附:①对于一组数据 , 其回归直线的斜率和截距的最小二乘估计分别为;②若随机变量 , 则有;③取.

    1. (1) 根据散点图判断 , 哪一个适宜作为粮食亩产量y关于化肥施用量x的回归方程类型(给出判断即可,不必说明理由);
    2. (2) 根据(1)的判断结果及表中数据,建立y关于x的回归方程;并预测化肥施用量为27公斤时,粮食亩产量y的值;
    3. (3) 经生产技术提高后,该化肥的有效率Z大幅提高,经试验统计得Z大致服从正态分布N),那这种化肥的有效率超过58%的概率约为多少?
    1. (1) 当时,求函数的单调区间;
    2. (2) 当时,求使不等式恒成立的最大整数的值.

微信扫码预览、分享更方便

试卷信息