当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山东省潍坊市2023年中考数学真题

更新时间:2023-11-27 浏览次数:283 类型:中考真卷
一、单选题
二、多选题
  • 7. (2023·潍坊) 下列运算正确的是(    )
    A . B . C . D .
  • 8. (2023·潍坊) 下列命题正确的是(    )
    A . 在一个三角形中至少有两个锐角 B . 在圆中,垂直于弦的直径平分弦 C . 如果两个角互余,那么它们的补角也互余 D . 两条直线被第三条直线所截,同位角一定相等
  • 9. (2023·潍坊) 已知抛物线经过点 , 则下列结论正确的是(    )
    A . 拋物线的开口向下 B . 拋物线的对称轴是 C . 拋物线与轴有两个交点 D . 时,关于的一元二次方程有实根
  • 10. (2023·潍坊) 发动机的曲柄连杆将直线运动转化为圆周运动,图①是发动机的实物剖面图,图②是其示意图.图②中,点A在直线l上往复运动,推动点B做圆周运动形成表示曲柄连杆的两直杆,点CD是直线l的交点;当点A运动到E时,点B到达C;当点A运动到F时,点B到达D . 若 , 则下列结论正确的是( )

        

    A . B . C . 相切时, D . 时,
三、填空题
四、解答题
    1. (1) 化简:
    2. (2) 利用数轴,确定不等式组的解集.
  • 16. (2023·潍坊) 如图,在中,平分 , 重足为点E , 过点E、交于点FG的中点,连接 . 求证:

      

  • 17. 如图,l是南北方向的海岸线,码头A与灯塔B相距24千米,海岛C位于码头A北偏东方向.一艘勘测船从海岛C沿北偏西方向往灯塔B行驶,沿线勘测石油资源,勘测发现位于码头A北偏东方向的D处石油资源丰富.若规划修建从D处到海岸线的输油管道,则输油管道的最短长度是多少千米?(结果保留根号)

      

  • 18. (2023·潍坊) 为研究某种化学试剂的挥发情况,某研究团队在两种不同的场景下做对比实验,收集了该试剂挥发过程中剩余质量y(克)随时间x(分钟)变化的数据(),并分别绘制在直角坐标系中,如下图所示.

    1. (1) 从中,选择适当的函数模型分别模拟两种场景下变化的函数关系,并求出相应的函数表达式;
    2. (2) 查阅文献可知,该化学试剂发挥作用的最低质量为3克.在上述实验中,该化学试剂在哪种场景下发挥作用的时间更长?
  • 19. (2023·潍坊) 某中学积极推进校园文学创作,倡导每名学生每学期向校报编辑部至少投1篇稿件.学期末,学校对七、八年级的学生投稿情况进行调查.

    【数据的收集与整理】

    分别从两个年级随机抽取相同数量的学生,统计每人在本学期投稿的篇数,制作了频数分布表.

    投稿篇数(篇)

    1

    2

    3

    4

    5

    七年级频数(人)

    7

    10

    15

    12

    6

    八年级频数(人)

    2

    10

    13

    21

    4

    【数据的描述与分析】

    1. (1) 求扇形统计图中圆心角的度数,并补全频数直方图.

        

    2. (2) 根据频数分布表分别计算有关统计量:

      统计量

      中位数

      众数

      平均数

      方差

      七年级

      3

      3

      1.48

      八年级

      m

      n

      3.3

      1.01

      直接写出表格中mn的值,并求出

    3. (3) 【数据的应用与评价】

      从中位数、众数、平均数、方差中,任选两个统计量,对七、八年级学生的投稿情况进行比较,并做出评价.

  • 20. (2023·潍坊) 工匠师傅准备从六边形的铁皮中,裁出一块矩形铁皮制作工件,如图所示.经测量,之间的距离为2米,米,米,是工匠师傅画出的裁剪虚线.当的长度为多少时,矩形铁皮的面积最大,最大面积是多少?

        

  • 21. (2023·潍坊) 如图,正方形内接于 , 在上取一点E , 连接 . 过点A , 交于点G , 交于点F , 连接

      

    1. (1) 求证:
    2. (2) 若 , 求阴影部分的面积.
  • 22. (2023·潍坊) [材料阅读]

    用数形结合的方法,可以探究的值,其中

    例求的值.

    方法1:借助面积为1的正方形,观察图①可知

    的结果等于该正方形的面积,

    方法2:借助函数的图象,观察图②可知

    的结果等于 , …,…等各条竖直线段的长度之和,

    即两个函数图象的交点到轴的距离.因为两个函数图象的交点轴的距为1,

    所以,

      

    【实践应用】

    1. (1) 任务一   完善的求值过程.

      方法1:借助面积为2的正方形,观察图③可知

      方法2:借助函数的图象,观察图④可知

      因为两个函数图象的交点的坐标为

      所以,

    2. (2) 任务二   参照上面的过程,选择合适的方法,求的值.
    3. (3) 任务三   用方法2,求的值(结果用表示).
    4. (4) 【迁移拓展】

      长宽之比为的矩形是黄金矩形,将黄金矩形依次截去一个正方形后,得到的新矩形仍是黄金矩形.

      观察图⑤,直接写出的值.

微信扫码预览、分享更方便

试卷信息