当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广西防城港市防城区2023-2024学年九年级上学期期中考试...

更新时间:2024-04-26 浏览次数:33 类型:期中考试
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑. )
二、填空题(本大题共6小题,每小题2分,共12分. )
三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤. )
  • 19. (2023九上·防城期中) 解下列一元二次方程:
    1. (1) (x-4)2-16= 0;
    2. (2)  x2-2x-15=0.
  • 20. (2023九上·防城期中) 某种病毒传播非常快,如果一个人被感染,经过两轮感染后就会有64个人被感染.求每轮感染中平均一个人会感染几个人
  • 21. (2023九上·防城期中) 如图,已知点A(2,4)、B(1,1)、C(3,2)是△ABC的三个顶点,

     
    1. (1) 画出△ABC关于y轴对称的△A1B1C1
    2. (2) 画出△ABC关于原点O中心对称的△A2B2C2;并写出点A2 , B2 , C3的坐标;
    3. (3) 在(1)、(2)的条件下,请在y轴上求作点P,使得A1P+PC2的值最小。(不写作法,请保留作图痕迹)、
  • 22. (2023九上·防城期中)  已知关于x的一元二次方程x2-4x+m= 0有两个实数根。
    1. (1) 求m的取值范围;
    2. (2) 若该方程的两个实数根相等请直接写出m的值,并解这个方程.
  • 23. (2023九上·防城期中) 如图,AC 是正方形ABCD的对角线,△ABC经过旋转后到达△AEF的位置.

    1. (1) 填空:旋转中心是点,点A、B的对应点分别是点
    2. (2) 说出它的旋转方向和旋转角是多少度;
    3. (3) 请在图中连接CF,求∠ACF的度数.
  • 24. (2023九上·防城期中) 某小区有一个半径为3m的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心1m处达到最大高度为3m;且各个方向喷出的水柱恰好在喷水池中心的装饰物处汇合,以水平方向为x轴,喷水池中心为原点建立如图所示的平面直角坐标系.

    1. (1) 写出点C、D的坐标;
    2. (2) 求水柱所在抛物线对应的函数表达式;
    3. (3) 王师傅在喷水池维修设备期间,喷水池意外喷水,如果他站在与池中心水平距离为2m处;通过计算说明身高1.8m的王师傅是否被淋湿?
  • 25. (2023九上·防城期中) [探究与应用]

    公式法是解一元二次方程常用的方法之一,应用比较广泛,能适用于解所有的一元二次方程.

    [观察与分析]小张在解方程x2-6x= 7时,他的解答过程如下:

    解:∵a=1, b=-6,c=7,(第一步)

    ∴△=b2-4ac=(-6)2-4×1×7=8> 0.(第二步)

    ∴方程有两个不相等的实数根

    x== = (第三步)

    ∴x1=3+ , x2=3- . (第四步)

    [思考与应用]

    1. (1) 小张的解答过程是否正确?
    2. (2) 如果你认为正确,请你用另一种方法来解这个方程,看看得到的结果是否一致; 

      如果你认为不正确,请指出小张从第几步开始出错,并用小张的方法重新解方程.

  • 26. (2023九上·防城期中)  [ 综合与实践]

    如图,生活中的很多工艺品,可以看成是由一些简单的平面图形旋转得到的几何体.

    [知识背景]把一个平面图形绕着不同的轴旋转,可以得到一个不同形状的几何体.如图,某数学兴趣小组把周长为36 cm的矩形ABCD绕它的一条边AB旋转可以形成一个圆柱体

    请完成下列方案设计中的任务

    [方案设计]目标:设计一个侧面积最大的圆柱体.

    任务一:把圆柱体的侧面沿着其中一条母线EF剪开并展平,研究圆柱体侧面展开图的形状及边长.

    1. (1) 圆柱体的侧面展开图是一个什么平面图形? GH的长度与圆柱体的底面周长有什么关系?
    2. (2) 如图,设BC的长度为xcm,请用含有x的代数式分别表示AB、GJ、GH的长度;

      任务二:计算圆柱体侧面积,设圆柱体的侧面积为ycm.

    3. (3) 在(2)的条件下,求y与x的函数表达式,并写出自变量x的取值范围; .
    4. (4) 在(3)的条件下,求当x取何值时,圆柱体的侧面积y最大?最大值是多少?

微信扫码预览、分享更方便

试卷信息