题库组卷系统-专注K12在线组卷服务
充值中心
开通VIP会员
特惠下载包
激活权益
帮助中心
登录
注册
试题
试卷
试题
在线咨询
当前:
高中数学
小学
语文
数学
英语
科学
道德与法治
初中
语文
数学
英语
科学
物理
化学
历史
道德与法治
地理
生物学
信息技术
历史与社会(人文地理)
社会法治
高中
语文
数学
英语
物理
化学
历史
思想政治
地理
生物学
信息技术
通用技术
首页
手动组卷
章节同步选题
知识点选题
智能组卷
章节智能组卷
知识点智能组卷
细目表组卷
试卷库
同步专区
备考专区
高考专区
智能教辅
在线测评
测
当前位置:
高中数学
/
备考专区
试卷结构:
课后作业
日常测验
标准考试
|
显示答案解析
|
全部加入试题篮
|
平行组卷
试卷细目表
发布测评
在线自测
试卷分析
收藏试卷
试卷分享
下载试卷
下载答题卡
广东省佛山市南海区重点中学2023-2024学年高一上学期数...
下载试题
平行组卷
收藏试卷
在线测评
发布测评
在线自测
答题卡下载
更新时间:2024-01-08
浏览次数:14
类型:月考试卷
试卷属性
副标题:
无
*注意事项:
无
广东省佛山市南海区重点中学2023-2024学年高一上学期数...
更新时间:2024-01-08
浏览次数:14
类型:月考试卷
考试时间:
分钟
满分:
分
姓名:
____________
班级:
____________
学号:
____________
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
一、单项选择题
1.
(2023高一上·南海月考)
已知集合
,
, 若
, 则实数
的值为( )
A .
1
B .
2
C .
1或2
D .
4
答案解析
收藏
纠错
+ 选题
2.
(2023高一上·南海月考)
当
时,在同一坐标系中,函数
与
的图象可以是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
3.
(2023高一上·南海月考)
下列函数中,既是奇函数又是区间
上的增函数的是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
4.
(2023高一上·南海月考)
函数
的零点所在的大致区间是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
5.
(2023高一上·天津市月考)
已知函数
是幂函数,且在
上是减函数,则实数
的值是( ).
A .
或2
B .
2
C .
D .
1
答案解析
收藏
纠错
+ 选题
6.
(2023高一上·南海月考)
设
,则( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
7.
(2023高一上·南海月考)
若偶函数
在
上单调递减,在
单调递增,且
,
, 则函数
的零点个数是( )
A .
1
B .
2
C .
3
D .
4
答案解析
收藏
纠错
+ 选题
8.
(2023高一上·南海月考)
某化工厂生产一种溶质,按市场要求,杂质含量不能超过0.01%.若该溶质的半成品含杂质1%,且每过滤一次杂质含量减少为原来的
, 则要使产品达到市场要求,该溶质的半成品至少应过滤( )
A .
5次
B .
6次
C .
7次
D .
8次
答案解析
收藏
纠错
+ 选题
二、多项选择题
9.
(2023高一上·南海月考)
集合
中的元素有( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
10.
(2023高一上·南海月考)
若
,
是任意正实数,且
, 则下列不等式成立的有( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
11.
(2023高一上·南海月考)
已知函数
是
上的奇函数,且当
时,
, 则( )
A .
B .
是减函数
C .
只有一个零点
D .
答案解析
收藏
纠错
+ 选题
12.
(2023高一上·南海月考)
如图,某池塘里的浮萍面积
(单位:
)与时间
(单位:月)的关系式为
(
,且
;
且
).则下列说法正确的是( )
A .
浮萍每月增加的面积都相等
B .
第6个月时,浮萍的面积会超过
C .
浮萍每月的增长率为1
D .
若浮萍面积蔓延到
,
,
所经过的时间分别为
,
,
,则
答案解析
收藏
纠错
+ 选题
三、填空题
13.
(2023高一上·南海月考)
函数
的零点个数是
.
答案解析
收藏
纠错
+ 选题
14.
(2023高一上·南海月考)
函数
与函数
互为反函数,且
图像经过点
, 则
.
答案解析
收藏
纠错
+ 选题
15.
(2023高一上·南海月考)
若函数
在区间
上的最小值为5,则
的值为
.
答案解析
收藏
纠错
+ 选题
16.
(2023高一上·南海月考)
已知
是
上的减函数,则实数
的取值范围为
.
答案解析
收藏
纠错
+ 选题
四、解答题
17.
(2023高一上·南海月考)
已知集合
,
.
(1) 若
, 求
;
(2) 若
, 求实数
的取值范围.
答案解析
收藏
纠错
+ 选题
18.
(2023高一上·南海月考)
已知函数
.
(1) 当
时,在给定的坐标系中作出函数
的图象,并写出它的单调递减区间;
(2) 若
, 且
, 求实数
.
答案解析
收藏
纠错
+ 选题
19.
(2023高一上·南海月考)
已知函数
(
,且
).
(1) 判断函数
的奇偶性,并予以证明;
(2) 求使
的x的取值范围.
答案解析
收藏
纠错
+ 选题
20.
(2023高一上·南海月考)
已知函数
.
(1) 判断函数
的单调性,并证明你的结论;
(2) 若方程
在
有解,求实数
的取值范围.
答案解析
收藏
纠错
+ 选题
21.
(2023高一上·南海月考)
为践行“绿水青山,就是金山银山”,我省决定净化闽江上游水域的水质.省环保局于2018年年底在闽江上游水域投入一些蒲草,这些蒲草在水中的蔓延速度越来越快,2019年2月底测得蒲草覆盖面积为
, 2019年3月底测得蒲草覆盖面积为
.设经过
个月蒲草覆盖面积为
(单位:
),
,
的关系有以下两个函数模型
(
,
)与
(
)可供选择.
(1) 分别求出两个函数模型的解析式;
(2) 若2018年年底测得蒲草覆盖面积为
, 从上述两个函数模型中选择更合适的一个模型,试估算至少到哪一年的几月底蒲草覆盖面积能超过
?(参考数据:
,
)
答案解析
收藏
纠错
+ 选题
22.
(2023高一上·南海月考)
已知函数
(
,
是常数且
)的一个零点是2,且方程
有两相等实根.
(1) 求
的解析式;
(2) 问是否存在实数
,
(
)使
的定义域和值域分别为
和
, 如果存在,求出
,
的值;如果不存在,说明理由.(艺术班选做)
答案解析
收藏
纠错
+ 选题
微信扫码预览、分享更方便
详情
试题分析
(总分:
0
)
总体分析
题量分析
难度分析
知识点分析
试卷信息