当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

吉林省长春市宽城区2023-2024学年九年级上学期数学期末...

更新时间:2024-03-06 浏览次数:57 类型:期末考试
一、选择题(本大题共8小题,每小题3分,共24分)
二、填空题(本大题6小题,每小题3分,共18分)
三、解答题(本大题共10小题,共78分)
  • 16. (2024九上·宽城期末) 小明和小亮对航天知识都非常感兴趣,他们在中国载人航天网站上了解到,航天知识分为“梦圆天路”“飞天英雄”“探秘太空”“巡天飞船”等模块.他们决定先从“梦圆天路”“飞英雄”“探秘太空”三个模块中各随机选择一个进行学习,分别设这三个模块为ABC.请用画树状图(或列表)的方法,求小明和小亮选择相同模块的概率.
  • 17. (2024九上·宽城期末)  图①、图②、图③均是的正方形网格、每个小正方形的边长均为1,每个小正方形的顶点称为格点,的顶点均在格点上,只用无刻度的直尺,在给定的网格中,分别按下列要求画图,保留适当的作图痕迹,不要求写出画法.

     

    1. (1) 在图①中的线段上找一点 , 连结 , 使.
    2. (2) 在图②中的线段上找一点 , 连结 , 使.
    3. (3) 在图③中的内部找一点 , 连结 , 使.
  • 18. (2024九上·宽城期末)  某校为了解本校学生每天在校体育锻炼时间的情况,随机抽取了若干名学生进行调查,获得了他们每天在校体育锻炼时间(单位:分钟)的数据,并对数据进行了整理、描述,部分信息如下.

    a.每天在校体育锻炼时间分布情况:

    每天在校体育锻炼时间x

    频数

    百分比

    14

    14%

    40

    m

    35

    35%

    n

    11%

    b.每天在校体育锻炼时间在这一组的是:

    80   81   81   81   82   82   83   83   84   84   84   84   84   85   85   85   85   85

    85   85   85   86   87   87   87   87   87   88   88   88   89   89   89   89   89

    根据以上信息.回答下列问题:

    1. (1) .
    2. (2) 该校共有1000名学生,估计该校每天在校体育锻炼时间不低于80分钟的学生人数.
    3. (3) 该校准备确定一个时间标准p(单位:分钟),对每天在校体育锻炼时间不低于p分钟的学生进行表扬.若要使25%的学生得到表扬,则p的值可以.
  • 19. (2024九上·宽城期末)  某风景区观景缆车路线如图所示,缆车从点出发,途经点后到达山顶 , 其中米,米,且段的运行路线与水平方向的夹角为段的运行路线与水平方向的夹角为 , 求垂直高度.(结果精确到1米)

    【参考数据:

  • 20. (2024九上·宽城期末)  如图,是等腰直角三角形. , 点的中点,相切于点 , 连结于点.

    1. (1) 判断所在直线与的位置关系,并说明理由.
    2. (2) 若的半径为2,求的长.(结果保留
  • 21. (2024九上·宽城期末)  已知乒乓球桌的长度为 , 某人从球桌边缘正上方高处将乒乓球向正前方抛向对面桌面,乒乓球的运动路线近似是抛物线的一部分.建立如图所示的平面直角坐标系,设乒乓球离桌面的竖直高度为 , 离球桌边缘的水平距离为.

    1. (1) 从乒乓球抛出到第一次落在球桌的过程中,近似满足函数关系.

      的几组数据如下表所示:

      水平距离x(cm)

      0

      40

      80

      120

      160

      180

      竖直高度y(cm)

      18

      42

      50

      42

      18

      0

      根据表中数据,直接写出乒乓球离桌面竖直高度的最大值,并求出满足的函数关系式.

    2. (2) 乒乓球第一次落在球桌后弹起,它离桌面的竖直高度与离球桌边缘的水平距离近似满足函数关系 , 通过计算说明乒乓球再次落下时是否仍落在球桌上.
  • 22. (2024九上·宽城期末)  三角形的中位线是非常重要的数学概念,其性质及应用蕴含着丰富的数学思想方法,可以解决诸多数学问题.

    图①     图②       图③

    1. (1) 如图①,在中,点DE分别为的中点.连结 , 则线段的位置关系与数量关系分别为.
    2. (2) 如图②,在四边形中,点EFGH分别为的中点.连结 , 且 , 求四边形的周长.
    3. (3) 如图③,在平面直角坐标系中,点AB的坐标分别为 , 点是坐标平面内一点,且.点是线段的中点,连结 , 则线段长度的最大值为.
  • 23. (2024九上·宽城期末) 如图,在中,.点在边上运动,点关于点的对称点为点 , 以为边在上方作正方形.设.

    1. (1) 的长为.
    2. (2) 求线段的长.(用含x的代数式表示)
    3. (3) 当正方形重叠部分的图形为四边形时,求的取值范围.
    4. (4) 连结 , 当所在直线将正方形的面积分成1:2两部分时,直接写出的值.
  • 24. (2024九上·宽城期末)  在平面直角坐标系中,二次函数bc为常数)的图象经过点和点.
    1. (1) 求这个二次函数的表达式.
    2. (2) 当时,二次函数的最大值与最小值的差为1,求的取值范围.
    3. (3) 当时,设二次函数的最大值与最小值的差为 , 求之间的函数关系式.
    4. (4) 点在直线上运动,若在坐标平面内有且只有两个点使为直角三角形,直接写出的取值范围.

微信扫码预览、分享更方便

试卷信息