当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

湖北省孝感市汉川市2023-2024学年八年级上学期期中数学...

更新时间:2024-02-28 浏览次数:22 类型:期中考试
一、精心选一选,相信自己的判断!(本大题共8小题,每小题3分,共24分.在每小题给
二、细心填一填,试试自己的身手!(本大题共8小题,每小题3分,共24分)
三、用心做一做(本大题共8小题,满分72分.请认真读题,冷静思考.解答题应写出必要
  • 18. (2024八下·新宁月考) 我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.

  • 19. (2023八上·汉川期中) 如图,△ABC中,∠B=90°,DE⊥AC于点E,点F在AB上,且CE=FB,CD=FD.

    1. (1) 求证:AD平分∠BAC;
    2. (2) ∠AFD与∠C的数量关系是
  • 20. (2023八上·汉川期中) 如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣4,2),B(﹣2,4),C(﹣1,1).

    1. (1) 画出△ABC关于x轴对称的△A1B1C1 , 并写出点A1 , B1 , C1的坐标;
    2. (2) 已知点D在y轴的正半轴上,且∠CDA=45°,点D的坐标为
  • 21. (2023八上·汉川期中) 如图,在等腰△ABC中,AB=AC,点D,E,F在△ABC的边上,满足BE=CF,BD=CE.

    1. (1) 求证:DE=EF;
    2. (2) 已知∠A=70°,求∠DEF的度数.
  • 22. (2023八上·汉川期中) 在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于点E,BD⊥AE交AE延长线于点D,连接CD,过点C作CF⊥CD交AD于F.

    1. (1) 如图1,①求∠EBD的度数;②求证:AF=BD;
    2. (2) 如图2,DM⊥AC交AC的延长线于点M,请直接写出AB,AC,AM之间的数量关系为
  • 23. (2023八上·汉川期中) △ABC中,∠ABC和∠ACB的平分线BD,CE相交于点O,记∠BAC=x,∠BOC=y.

    1. (1) 如图1.

      ①若x=50°,则y=    ▲        

      ②请你根据①中计算的心得猜想写出y与x的关系式,并证明你猜想的正确性;

    2. (2) 如图2,启智学校内有一个三角形的小花园,花园中有两条小路BD和CE为△ABC的角平分线,交点为点O,在O处建有一个自动浇水器,需要在BC边上取一处接水口F,经过测量得知∠BAC=120°,OD⋅OE=12000m2 , BC﹣BE﹣CD=160m,请你求出水管OF至少要多长?
    1. (1) 【积累经验】

      萌萌学完全等三角形的知识后,遇到了这样一个问题:如图1,DA⊥AB于点A,CB⊥AB于点B,点E在线段AB上,连接DE,CE,∠DEC=90°,且DE=CE.求证:AD=BE,AE=BC.萌萌发现只需证明△≌△即可;

    2. (2) 【类比应用】

      如图2,在平面直角坐标系中,在△ABC中,∠ACB=90°,AC=BC,已知点A的坐标为(0,3),点C的坐标为(2,0),求点B的坐标;

    3. (3) 【拓展提升】

      如图3,在平面直角坐标系中,点A的坐标为(﹣6,0),点B为y轴正半轴上一动点,分别以OB,AB为边在第一,第二象限中分别作等腰直角△OBF,等腰直角△ABE,∠ABE=∠OBF=90°,连接EF交y轴于点P,当点B在y轴上移动时,PB的长度是否发生改变?若不变,求出PB的值;若变化,求PB的取值范围.

微信扫码预览、分享更方便

试卷信息