当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

吉林省长春市双阳区2023-2024学年九年级上学期期末数学...

更新时间:2024-05-15 浏览次数:26 类型:期末考试
一、选择题(共8小题,每小题3分,共24分)
二、填空题(共6小题,每小题3分,共18分)
三、解答题(共78分)
  • 16. (2024九上·双阳期末) 阅读材料,并回答问题.

    小明在学习一元二次方程时,解方程2x2﹣8x+5=0的过程如下:

    解:2x2﹣8x+5=0.

    2x2﹣8x=﹣5.①

    . ②

    . ③

    . ④

    . ⑤

    . ⑥

    问题:

    1. (1) 上述过程中,从步开始出现了错误(填序号);
    2. (2) 发生错误的原因是:
    3. (3) 写出这个方程的解:
  • 17. (2024九上·双阳期末) 杭州第19届亚运会吉祥物“江南忆”,具体指A.琮琮、B.宸宸、C.莲莲.如图是三张吉祥物的不透明卡片(卡片除内容外,其余均相同).将这三张卡片背面朝上洗匀放好,小李同学从这三张卡片中随机抽取一张后,再从剩余的两张卡片中随机抽取一张,请用树状图法或列表法,求两次抽到卡片恰好是琮琮和宸宸的概率.

  • 18. (2024九上·双阳期末) 抛物线y=ax2+bx﹣4上部分点的横坐标x,纵坐标y的对应值如下表:

    x

    ﹣2

    ﹣1

    0

    1

    2

    y

    0

    ﹣4

    ﹣4

    0

    8

    根据上表填空或求值:

    1. (1) 抛物线与y轴的交点坐标是 
    2. (2) 求a和b的值;
    3. (3) 当x=﹣3时,则y的值为 
  • 19. (2023·阜阳模拟) 某数学实践小组准备测量路灯杆的高度.先从水平地面上一点C处,测得C到路灯杆AB底部B的距离为10米,在C处放置高为1米的测角仪CD,测得路灯杆顶部A的仰角为60°,求路灯杆AB的高度(结果保留根号).

  • 20. (2024九上·双阳期末) 如图①、图②、图③均是6×5的正方形网格,每个小正方形的顶点称为格点,且每个小正方形的边长均为1,点A、B、C、D、F、G、K、M、H、N均在格点上.在给定的网格中画图或填空,要求只用无刻度的直尺,保留作图痕迹,不要求写出画法.

    1. (1) 图①中,的值为 
    2. (2) 图②中,在FG上找一点P,使FP=3.
    3. (3) 图③中,在KM上找一点Q,连接HQ、NQ,使△HKQ∽△NMQ.
  • 21. (2024九上·双阳期末) 某课外活动小组准备围建一个矩形实践基地,其中一边靠墙,另外三边用长为36米的篱笆围成.已知墙长为19米(如图所示),设这个基地垂直于墙的一边长为x米.

    1. (1) 当矩形实践基地的面积为160平方米时,求垂直于墙的边长x.
    2. (2) 当这个基地的面积最大时,求垂直于墙的边长x,并求这个面积最大值.
  • 22. (2024九上·双阳期末) 【教材呈现】华师版九年级上册63页例1.
    如图,在△ABC中,点D是边AB的三等分点,DE∥BC,DE=5,求BC的长.

     

    【应用拓展】

    1. (1) 如图①,在△ABC中,点D是边AB的中点,点F为BC延长线上一点,连接DF交AC于点E,若DE:EF=3:1,DG∥AC,EC=2,则AC的长为  
    2. (2) 如图②,在△ABC中,点D为边BA延长线上一点,点E为BC上一点,连接DE交AC于点F,若点A为DB的中点,CE:EB=1:2,△DBE的面积为4,则△CFE(阴影部分)面积为
  • 23. (2024九上·双阳期末) 如图,在△ABC中,∠BCA=90°, AC=8, sinB= , 点D是斜边AB的中点,点E是边AC的中点,连接CD,点P为线段CD上一点,作点C关于直线EP对称点F,连结EF、PF,设DP长为x(x>0).

    1. (1) AB的长为 
    2. (2) 求PF长度(用含x的代数式表示).
    3. (3) 当点F落在直线CD上时,求x的值.
    4. (4) 当直线PF与△ABC的边BC或AC垂直时,直接写出x的值.
  • 24. (2024九上·双阳期末) 在平面直角坐标系中,抛物线y=x2+bx﹣3的对称轴为直线x=1.
    1. (1) 求这条抛物线的解析式.
    2. (2) 当﹣1≤x≤4时,求y的最大值和最小值.
    3. (3) 点P为这条抛物线上的一个动点,点P的横坐标为m(m>0),以点P为中心作正方形ABCD,AB=2m,且AB⊥x轴.
      ①当抛物线落在正方形内部的点的纵坐标y随x的增大而减小时,求m的取值范围.

      ②正方形ABCD的边与抛物线只有两个交点,且交点的纵坐标之差为时,直接写出m的值.

微信扫码预览、分享更方便

试卷信息