当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广东省深圳市2023-2024学年九年级中考适应性考试数学试...

更新时间:2024-03-22 浏览次数:91 类型:中考模拟
一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)
  • 1. (2023·深圳模拟) 围棋在古代被列为“琴棋书画”四大文化之一,蕴含着中华文化的丰富内涵,如图所示是一个无盖的围棋罐,其主视图为(  )

    A . B . C . D .
  • 2. (2023·深圳模拟) 已知x=1是关于x的一元二次方程x2+kx﹣6=0的一个根,则k的值为(  )
    A . ﹣5 B . ﹣7 C . 5 D . 7
  • 3. (2024·东莞模拟) 如图,在菱形ABCD中,∠B=60°,连接AC,若AC=6,则菱形ABCD的周长为(  )

    A . 24 B . 30 C . D .
  • 4. (2023·深圳模拟) 用配方法解方程x2+2x=3时,配方后正确的是(  )
    A . (x+2)2=7 B . (x+2)2=5 C . (x+1)2=4 D . (x+1)2=2
  • 5. (2023·深圳模拟) 如图,在由大小相同的小正方形组成的网格中有一条“心形线”.数学小组为了探究随机投放一个点恰好落在“心形线”内部的概率,进行了计算机模拟试验,得到如下数据:

    试验总次数

    100

    200

    300

    500

    1500

    2000

    3000

    落在“心形线”内部的次数

    61

    93

    165

    246

    759

    996

    1503

    落在“心形线”内部的频率

    0.610

    0.465

    0.550

    0.492

    0.506

    0.498

    0.501

    根据表中的数据,估计随机投放一点落在“心形线”内部的概率为(  )

    A . 0.46 B . 0.50 C . 0.55 D . 0.61
  • 6. (2024·东莞模拟) 一段加固后的护栏如图所示,该护栏竖直部分是由等距(任意相邻两根木条之间的距离相等)且平行的木条构成.已知AC=50cm,则BC的长度为(  )

    A . 20cm B . 25cm C . 30cm D . cm
  • 7. (2023·深圳模拟) 击地传球是篮球运动中的一种传球方式,利用击地传球可以有效地躲避对手的拦截.传球选手从点A处将球传出,经地面点O处反弹后被接球选手在点C处接住,将球所经过的路径视为直线,此时∠AOB=∠COD.若点A距地面的高度AB为1.5m,点C距地面的高度CD为1m,传球选手与接球选手之间的距离BD为5m,则OB的长度为(  )

    A .  m B . 2m C . 2.5m D . 3m
  • 8. (2023·深圳模拟) 据报道,2020年至2022年深圳市居民年人均可支配收入由6.49万元增长至7.27万元,设这两年人均可支配收入的年平均增长率为x,可列方程为(  )
    A . 6.49(1+x)2=7.27 B . 6.49(1+2x)=7.27 C . 6.49(1+x2)=7.27 D . 7.27(1﹣x)2=6.49
  • 9. (2023·深圳模拟) 如图是凸透镜成像示意图,CD是蜡烛AB通过凸透镜MN所成的虚像.已知蜡烛的高AB为5.4cm,蜡烛AB离凸透镜MN的水平距离OB为6cm,该凸透镜的焦距OF为10cm,AE∥OF,则像CD的高为(  )

    A . 15cm B . 14.4cm C . 13.5cm D . 9cm
  • 10. (2023·深圳模拟) 如图,在菱形ABCD中,对角线AC与BD相交于点O,过点D作DF⊥AB于点F,交AC于点E.已知AE=4,EC=6,则的值为(  )

    A . B . C . D .
二、填空题(本大题共5小题,每小题3分,共15分)
三、解答题(本题共7小题,共55分)
  • 17. (2023·深圳模拟) 深圳蕴藏丰富的旅游文化资源.为促进深港两地学生交流,某校开展“美丽深圳,深港同行”主题活动,景点有三个:A.梧桐烟云,B.莲花春早,C.梅沙踏浪.每位参加交流的学生都可以从中随机选择一个景点.
    1. (1) 参加此次交流活动的小军选择的景点为“梧桐烟云”的概率是 
    2. (2) 请用列表或画树状图的方法,求小明和小颖选择的景点都是“莲花春早”的概率.
  • 18. (2023·深圳模拟) 已知一个矩形的面积为6,长为x,宽为y.
    1. (1) y与x之间的函数表达式为 
    2. (2) 在图中画出该函数的图象;

      列表:

      x

      1

      2

      3

      4

      6

      y

      6

      3

      m

      1.5

      1

      上面表格中m的值是  ▲ 

      描点:在如图所示的平面直角坐标系中描出相应的点;

      连线:用光滑的曲线顺次连接各点,即可得到该函数的图象.

    3. (3) 若点A(a,b)与点B(a+1,c)是该函数图象上的两点,试比较b和c的大小.
  • 19. (2023·深圳模拟) 某品牌画册每本成本为40元,当售价为60元时,平均每天的销售量为100本.为了吸引消费者,商家决定采取降价措施.经试销统计发现,如果画册售价每降低1元时,那么平均每天就能多售出10本.设这种画册每本降价x元.
    1. (1) 平均每天的销售量为 本(用含x的代数式表示);
    2. (2) 商家想要使这种画册的销售利润平均每天达到2240元,且要求每本售价不低于55元,求每本画册应降价多少元?
  • 20. (2023·深圳模拟) 如图,点O是矩形ABCD的对角线AC上一点,过点O作EF⊥AC,交BC于点E,交AD于点F.

    1. (1) 在不添加新的点和线的前提下,请增加一个条件: ▲  , 使得OE=OF,并说明理由;
    2. (2) 若OE=OF,AB=6,BC=8,求EF的长.
  • 21. (2023·深圳模拟) 【项目式学习】

    项目主题:守护生命,“数”说安全.

    项目背景:随着社会的发展,安全问题变得日益重要.某校为了提高学生的安全意识,开展以“守护生命,'数'说安全”为主题的项目式学习活动.创新小组通过考察测量、模拟探究和成果迁移等环节,开展地下弯道对通行车辆长度的限制研究.

    1. (1) 任务一:考察测量

      如图1,创新小组所选取弯道的内、外侧均为直角,道路宽均为4m,则AB=m;

    2. (2) 任务二:模拟探究

      如果汽车在行驶中与弯道内、外侧均无接触,则可安全通过.

      创新小组用线段模拟汽车通过宽度相同的直角弯道,探究发现:

      ①当CD<2AB时(如图1),线段CD能通过直角弯道;

      ②当CD=2AB时,必然存在线段CD的中点E与点B重合的情况,线段CD恰好不能通过直角弯道(如图2).此时,∠ADC的度数是 ;③当CD>2AB时,线段CD不能通过直角弯道.

    3. (3) 如图3,创新小组用矩形PQMN模拟汽车通过宽均为4m的直角弯道,发现当PQ的中点E与点B重合,且PQ⊥AB时,矩形PQMN恰好不能通过该弯道.若PQ=am,PN=2m,且矩形PQMN能通过该直角弯道,求a的最大整数值.
    4. (4) 任务三:成果迁移

      如图4,某弯道外侧形状可近似看成反比例函数y=(x>0)的图象,其对称轴交图象于点A.弯道内侧的顶点B在射线OA上,两边分别与x轴,y轴平行,OA=2m,AB=4m.创新小组探究发现通过该弯道的原理与通过直角弯道类似.有一辆长为bm,宽为2m的汽车需要安全通过该弯道,则b的最大整数值为 .(参考数据:≈1.4,≈1.7,≈2.2,≈2.6)

  • 22. (2023·深圳模拟) 已知点E是正方形ABCD内部一点,且∠BEC=90°.

    1. (1) 【初步探究】

      如图1,延长CE交AD于点P.求证:△BEC∽△CDP;

    2. (2) 【深入探究】

      如图2,连接DE并延长交BC于点F,当点F是BC的中点时,求的值;

    3. (3) 【延伸探究】

      连接DE并延长交BC于点F,DF把∠BEC分成两个角,当这两个角的度数之比为1:2时,请直接写出的值.

微信扫码预览、分享更方便

试卷信息